ISSN 2658-6525 (Online)
ISSN 2658-4123 (Print)
Основан в 1990 году
Свидетельство о регистрации
ПИ № ФС 77-74640
от 24 декабря 2018 г.

PDF Скачать статью в pdf.

УДК 519.6

DOI: 10.15507/2658-4123.029.201904.480-495

 

Параметрическая идентификация моделей с заданными качественными характеристиками

 

Кантор Ольга Геннадиевна
доцент кафедры корпоративных финансов и учетных технологий ФГБОУ ВО «Уфимский государственный нефтяной технический университет» (450062, Россия, г. Уфа, ул. Космонавтов, д. 1), кандидат физико-математических наук, ResearcherID: O-5136-2015, ORCID: https://orcid.org/0000-0002-3186-3285, ScopusID: 26767794600, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Спивак Семен Израилевич
заведующий кафедрой математического моделирования ФГБОУ ВО «Башкирский государственный университет» (450076, Россия, г. Уфа, ул. Заки Валиди, д. 32), доктор физико-математических наук, профессор, ResearcherID: B-9334-2017, ORCID: https://orcid.org/0000-0002-0911-7446, ScopusID: 16465463600, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Морозкин Николай Данилович
ректор ФГБОУ ВО «Башкирский государственный университет» (450076, Россия, г. Уфа, ул. Заки Валиди, д. 32), доктор физико-математических наук, профессор, ResearcherID: D-2570-2019, ScopusID: 6603118906, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Введение. По результатам решения задачи параметрической идентификации должна быть определена модель, которая в рамках выбранной структуры обеспечивает наилучшее воспроизведение экспериментальных данных. Понятие «наилучшее» не является жестко структурированным, поэтому процедура выявления такой модели подчиняется естественной логике и включает этапы формирования информационной базы исследования, определения множества приемлемых моделей и последующего выбора лучшей из них. Если это множество окажется большим, то процедура определения оптимальной модели может оказаться трудоемкой. В этой связи особую значимость приобретает разработка методов параметрической идентификации, в рамках которых уже на стадии формирования множества приемлемых моделей предоставляется возможность учета интересующих исследователя качественных аспектов идентифицируемой зависимости.
Материалы и методы. Совокупность приемлемых методов в задачах параметрической идентификации во многом зависит от типа неопределенности экспериментальных данных. Так, например, вероятностно-статистические методы целесообразно использовать, если наблюдаемые факторы являются случайными и подчиняются какому-либо закону распределения вероятностей. Если же условия применения таких методов не выполняются, то полезным может оказаться представленный в работе подход, основанный на выявлении границ области расположения параметров модели, обеспечивающих достижение заданных уровней качественных характеристик.
Результаты исследования. Формализована процедура параметрической идентификации моделей, основанная на использовании предельно допустимых оценок параметров, позволяющая определять множество их значений, гарантирующих достижение требуемого качественного уровня описания экспериментальных данных, в том числе с позиций анализа влияния изменений требований к точности их воспроизведения. Представлена апробация разработанного метода на примере построения однофакторной модели химической кинетики.
Обсуждение и заключение. Показано, что полученное значение константы скорости химической реакции в соответствии с введенными критериями обеспечивает приемлемую точность, адекватность и устойчивость идентифицированной кинетической модели. При этом по результатам расчетов была выявлена информация, которая может составить основу для планирования экспериментов, проводимых в целях повышения точности воспроизведения экспериментальных данных.

Ключевые слова: параметрическая идентификация, предельно допустимые оценки, подход Л. В. Канторовича, качество модели

Для цитирования: Кантор О. Г., Спивак С. И., Морозкин Н. Д. Параметрическая идентификация моделей с заданными качественными характеристиками // Инженерные технологии и системы. 2019. Т. 29, № 4. С. 480–495. DOI: https://doi.org/10.15507/2658-4123.029.201904.480-495

Заявленный вклад соавторов: О. Г. Кантор – формирование основной концепции, цели и задачи исследования, проведение расчетов, подготовка текста, формирование выводов; С. И. Спивак – научное руководство, анализ результатов исследований, доработка текста, корректировка выводов; Н. Д. Морозкин – корректировка литературного анализа, доработка текста, корректировка выводов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

Поступила 06.05.2019; принята к публикации 06.06.2019;
опубликована онлайн 31.12.2019

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Орлов А. И. Некоторые нерешенные вопросы в области математических методов исследования // Заводская лаборатория. 2002. Т. 68, № 3. С. 52–56.

2. Ионов П. А., Сенин П. В., Столяров А. В. Моделирование напряженно-деформированного состояния в ресурсолимитирующем соединении объемного гидропривода // Вестник Мордовского университета. 2018. Т. 28, № 4. С. 537–551. DOI: https://doi.org/10.15507/0236-2910.028.201804.537-551

3. Коржавина А. С., Князьков В. С. Метод умножения с масштабированием результата для высокоточных модулярно-позиционных интервально-логарифмических вычислений // Инженерные технологии и системы. 2019. Т. 29, № 2. С. 187–204. DOI: https://doi.org/10.15507/2658-4123.029.201902.187-204

4. Жбанова Н. Ю., Блюмин С. Л. Параметрическая идентификация кусочно-линейных и кусочно-нелинейных многоэтапных нечетких процессов // Вестник Иркутского государственного технического университета. 2016. Т. 20, № 11. С. 84–93. DOI: http://www.doi.org/10.21285/1814-3520-2016-11-84-93

5. Канторович Л. В. О некоторых новых подходах к вычислительным методам и обработке наблюдений // Сибирский математический журнал. 1962. Т. 3, № 5. С. 701–709.

6. Alefeld G., Mayer G. Interval Analysis: Theory and Applications // Journal of Computational Applied Mathematics. 2000. Vol. 121, Issue 1–2. Pp. 421–464. DOI: https://doi.org/10.1016/S0377-0427(00)00342-3

7. Стандартизация обозначений в интервальном анализе / Б. Кирфотт [и др.] // Вычислительные технологии. 2010. Т. 15, № 1. С. 7–13. URL: http://www.ict.nsc.ru/jct/annotation/1345 (дата обращения: 20.10.2019).

8. Moore R. E. Interval Analysis // Journal of the Franklin Institute. 1967. Vol. 284, Issue 2. Pp. 148–149. DOI: https://doi.org/10.1016/0016-0032(67)90590-X

9. Кумков С. И. Обработка экспериментальных данных ионной проводимости расправленного электролита методами интервального анализа // Расплавы. 2010. № 3. С. 79–89.

10. Оскорбин Н. М., Жилин С. И., Суханов С. И. Интервальный подход к оценке согласованности и точности геоданных // Геодезия и картография. 2011. № 11. С. 12–16. URL: https://geocartography.ru/archive/2011-november (дата обращения: 20.10.2019).

11. Суханов В. А. Исследование эмпирических зависимостей: нестатистический подход: сборник научных статей / под ред. Н. А. Оскорбина, П. И. Кузьмина. Барнаул: Алт. ун-т, 2007. С. 115–127.

12. Chemometrics in Analytical Chemistry – Part I: History, Experimental Design and Data Analysis Tools / R. G. Brereton [et al.] // Analytical and Bioanalytical Chemistry. 2017. Vol. 409, Issue 25. Pp. 5891–5899. DOI: http://www.doi.org/10.1007/s00216-017-0517-1

13. Chemometrics in Analytical Chemistry – Part II: Modeling, Validation, and Applications / R. G. Brereton [et al.] // Analytical and Bioanalytical Chemistry. 2018. Vol. 410, Issue 26. Pp. 6691–6704. DOI: http://www.doi.org/10.1007/s00216-018-1283-4

14. Кантор О. Г., Спивак С. И., Талипова Р. Р. Параметрическая идентификация математических моделей химической кинетики // Системы и средства информатики. 2017. Т. 27, № 3. С. 145–154. DOI: https://doi.org/10.14357/08696527170312

15. Спивак С. И., Тимошенко В. И., Слинько М. Г. Методы построения кинетических моделей стационарных реакций // Химическая промышленность сегодня. 1979. № 3. С. 33–36.

16. Яблонский Г. С., Спивак С. И. Математические модели химической кинетики. М.: Знание, 1977. 64 с.

17. Pomerantsev A. L., Kutsenova A. V., Rodionova O. Ye. Kinetic Analysis of Non-Isothermal Solid-State Reactions: Multi-Stage Modeling Without Assumptions in the Reaction Mechanism // Physical Chemistry Chemical Physics. 2017. Vol. 19, Issue 5. Pp. 3606–3615. DOI: https://doi.org/10.1039/c6cp07529k

18. Спивак С. И., Исмагилова А. С., Кантор О. Г. Области неопределенности в математической теории анализа измерений // Системы управления и информационные технологии. 2014. Т. 58, № 4. С. 17–21. URL: http://www.sbook.ru/suit/CONTENTS/140400.pdf (дата обращения: 20.10.2019).

19. Кантор О. Г., Спивак С. И. Оценка качества моделей химической кинетики // Известия Уфимского научного центра РАН. 2017. № 2. С. 11–17. URL: http://sciencerb.ru/# (дата обращения: 20.10.2019).

 

 

Лицензия Creative Commons
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla