DOI: 10.15507/2658-4123.031.202103.449-469
Effect of Chromium Addition and Regimes during Electrospark Alloying with Aluminum Matrix Anode Material of Steel 45
Sergey V. Nikolenko
Acting Director of Institute of Materials Science of Far East Branch of the Russian Academy of Sciences (153 Tikhookeanskaya St., Khabarovsk 680042, Russian Federation), D.Sc. (Engr.), Researcher ID: A-4229-2012, ORCID: https://orcid.org/0000-0003-4474-5795, This email address is being protected from spambots. You need JavaScript enabled to view it.
Leonid A. Konevtsov
Senior Researcher, Institute of Materials Science of Far East Branch of the Russian Academy of Sciences (153 Tikhookeanskaya St., Khabarovsk 680042, Russian Federation), Cand.Sc. (Engr.), Researcher ID: H-4087-2018, ORCID: https://orcid.org/0000-0002-7212-3953, This email address is being protected from spambots. You need JavaScript enabled to view it.
Pavel S. Gordienko
Leading Researcher, Institute of Chemistry of Far East Branch of the Russian Academy of Sciences (159 Vladivostok Centenary Prospect, Vladivostok 690022, Russian Federation), D.Sc. (Engr.), Professor, Researcher ID: AAS-7040-2021, ORCID: https://orcid.org/0000-0003-1537-2977, This email address is being protected from spambots. You need JavaScript enabled to view it.
Eugenii S. Panin
Researcher, Institute of Chemistry of Far East Branch of the Russian Academy of Sciences (159 Vladivostok Centenary Prospect, Vladivostok 690022, Russian Federation), Cand.Sc. (Chem.), Researcher ID: AAS-7013-2021, ORCID: https://orcid.org/0000-0002-8980-275X, This email address is being protected from spambots. You need JavaScript enabled to view it.
Sergey A. Velichko
Professor of the Technical Service Machines Chair of Institute of Mechanics and Power Engineering, National Research Mordovia State University (68 Bolshevistskaya St., Saransk 430005, Russian Federation), D.Sc. (Engr.), Researcher ID: G-9021-2018, ORCID: https://orcid.org/0000-0001-6254-5733, This email address is being protected from spambots. You need JavaScript enabled to view it.
Introduction. Electrospark alloying is used to produce hardening coatings. Anodic materials with unique properties include metal matrix composites based on aluminum. The aim of the work is to develop new aluminum matrix anode composite materials with high efficiency indicators during electrospark alloying of carbon steel 45.
Materials and Methods. Structural carbon steel 45 was used as the substrate (cathode). Aluminum matrix materials are chosen as the anode materials. The value of the cathode weight increment and the anode erosion were determined by the gravimetric method on the Shinko Denshi HTR-220 CE electronic scale with an accuracy of ±∙10–4 g. To study the microstructure and metallography of the surface of the anode materials, the microscopes EVO-50 XVP and Altami MET 3 APO from S. ZEISS were used. The device CALOTEST CSM Instruments was used to study coatings for microabrasive wear.
Results. There is developed a methodological scheme for achieving the efficiency of the electric spark alloying parameters and the properties of the doped layer depending on the composition of the anodic metal matrix composite material based on aluminum with the addition of chromium and processing modes. The mode of Institute of Materials Science electrospark installation with pulse energy of 14.4 J was set for anode material application during electrospark alloying. It is established that after electric spark alloying of steel 45, the hardness and wear resistance of the surface increase by 2-3 times, and the heat resistance ‒ by 5–18 times.
Discussion and Conclusion. The series of increasing the cathode mass, the erosion resistance of the electrode materials, mass transfer coefficient, heat resistance, hardness and wear resistance of the alloyed layer are obtained. The obtained series are a convenient tool for achieving various efficiency parameters in electric spark alloying depending on the selected anode material and processing modes.
Keywords: electric spark alloying, anodic metal matrix materials, hardness, wear resistance, heat resistance
Conflict of interest: The authors declare no conflict of interest.
For citation: Nikolenko S.V., Konevtsov L.A., Gordienko P.S., et al. Effect of Chromium Addition and Regimes during Electrospark Alloying with Aluminum Matrix Anode Material of Steel 45. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2021; 31(3):449-469. DOI: https://doi.org/10.15507/2658-4123.031.202103.449-469
Contribution of the authors:
S. V. Nikolenko – formulation of the basic research concept and analysis of the results.
L. A. Konevtsov – methodological guide.
P. S. Gordienko – writing the draft.
E. S. Panin – experimental studies.
S. A. Velichko – formulation of conclusions.
All authors have read and approved the final manuscript.
Received 20.05.2021; approved after reviewing 25.06.2021;
accepted for publication 05.07.2021
REFERENCES
1. Panfilov A.A., Prusov E.S., Kechin V.A. Features of Metallurgical Processes at the Melting of Aluminum Matrix Compositional Alloys. Liteyshchik Rossii = Foundryman of Russia. 2018; (11):10-13. Available at: https://www.elibrary.ru/item.asp?id=36455377 (accessed 15.05.2021). (In Russ., abstract in Eng.)
2. Verkhoturov A.D., Ivanov V.I., Dorokhov A.S., et al. Effect of the Nature of Electrode Materials on Erosion and Properties of Doped Layers. The Criteria for Evaluating the Effectiveness of Electrospark Alloying. Vestnik Mordovskogo universiteta = Mordovia University Bulletin. 2018; 28(3):302-320. (In Russ., abstract in Eng.) DOI: https://doi.org/10.15507/0236-2910.028.201803.302-320
3.Nikolenko S.V., Gordienko P.S., Konevtsov L.A., et al. [Use of Functionally Graded Materials in Electrospark Alloying of Carbon Steels]. Tekhnologiya mashinostroeniya = Technology of Mechanical Engineering. 2019; (10):5-13. Available at: http://www.ic-tm.ru/info/10_28 (accessed 15.05.2021). (In Russ.)
4. Vlasenko V.D., Ivanov V.I., Aulov V.F., et al. Modelling the Temperature Field of a Surface in Using Electrospark Alloying of Metals. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2019; 29(2):218-233. (In Russ., abstract in Eng.) DOI: https://doi.org/10.15507/2658-4123.029.201902.218-233
5. Pogozhev Yu.S., Levashov Ye.A., Kudryashov A.Ye., et al. [Composite SHS Materials Based on Titanium Carbide and Nickelide, Alloyed with Refractory Nanocomponents]. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya = Powder Metallurgy аnd Functional Coatings. 2012; (2):24-32. Available at: https://www.elibrary.ru/item.asp?id=17896181 (accessed 15.05.2021). (In Russ.)
6. Vereshchaka A.A., Vereshchaka A.S., Mgaloblishvili O., et al. Nano-Scale Multilayered-Composite Coatings for the Cutting Tools. International Journal of Advanced Manufacturing Technology. 2014; 72(1):303-317. (In Eng.) DOI: https://doi.org/10.1007/s00170-014-5673-2
7. Vereshchaka A.A. Functional Coatings for Cutters. Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Bryansk State Technical University. 2015; (4):25-36. Available at: https://www.elibrary.ru/item.asp?id=24985862 (accessed 15.05.2021). (In Russ., abstract in Eng.)
8. Sweet G.A., Brochu M., Hexemer Jr. R. L., et al. Consolidation of Aluminum-Based Metal Matrix Composites via Spark Plasma Sintering. Materials Science and Engineering: A. 2015; 648:123-133. (In Eng.) DOI: https://doi.org/10.1016/j.msea.2015.09.027
9. Yang M., Zhang D., Gu X., Zhang L. Fabrication and Properties of SiCp/Al Composites by Pulsed Electric Current Sintering. Journal of Materials Science. 2005; 40:5029-5031. (In Eng.) DOI: https://doi.org/10.1007/s10853-005-1814-1
10. Zhang J.-T., Liu L.-Sh., Zhai P.-Ch., et al. Effect of Fabrication Process on the Microstructure and Dynamic Compressive Properties of SiСp/Al Composites Fabricated by Spark Plasma Sintering. Materials Letters. 2008; 62(3):443-446. (In Eng.) DOI: https://doi.org/10.1016/j.matlet.2007.04.118
11. Chu K., Jia C., Tian W., et al. Thermal Conductivity of Spark Plasma Sintering Consolidated SiCp/Al Composites Containing Pores: Numerical Study and Experimental Validation. Composites Part A: Applied Science and Manufacturing. 2010; 41(1):161-167. (In Eng.) DOI: https://doi.org/10.1016/j.compositesa.2009.10.001
12. Mizuuchi K., Inoue K., Agari Y., et al. Processing of Al/SiC Composites in Continuous Solid-Liquid Co-Existent State by SPS and Their Thermal Properties. Composites Part B: Engineering. 2012; 43(4):2012-2019. (In Eng.) DOI: https://doi.org/10.1016/j.compositesb.2012.02.004
13. Parvin N., Assadifard R., Safarzadeh P., et al. Preparation and Mechanical Properties of SiCReinforced Al6061 Composite by Mechanical Alloying. Materials Science and Engineering A. 2008; 492(1-2):134-140. (In Eng.) DOI: https://doi.org/10.1016/j.msea.2008.05.004
14. Wang J., Yi D., Su X., et al. Properties of Submicron AlN Particulate Reinforced Aluminum Matrix Composite. Materials and Design. 2009; 30(1):78-81. (In Eng.) DOI: https://doi.org/10.1016/j.matdes.2008.04.039
15. Araujo E.R., Souza M.S., Filho F.A., et al. Preparation of Metal Matrix Aluminum Alloys Composites Reinforced by Silicon Nitride and Aluminum Nitride through Powder Metallurgy Techniques. Materials Science Forum. 2012; 727-728. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/MSF.727-728.259
16. Yang M.J., Zhang D.M., Gu X.F., Zhang L.M. Effects of SiC Particle Size on CTEs of SiCp/Al Composites by Pulsed Electric Current Sintering. Materials Chemistry and Physics. 2006; 99(1):170-173. (In Eng.) DOI: https://doi.org/10.1016/j.matchemphys.2005.10.019
17. Saberi Y., Zebarjad S.M., Akbari G.H. On the Role of Nano-Size SiC on Lattice Strain and Grain Size of Al/SiC Nanocomposite. Journal of Alloys and Compounds. 2009; 484(1-2):637-640. (In Eng.) DOI: https://doi.org/10.1016/j.jallcom.2009.05.009
18. Tang F., Anderson I., Biner S. Solid State Sintering and Consolidation of Al Powders and Al Matrix Composites. Journal of Light Metals. 2002; 2(4):201-214. (In Eng.) DOI: https://doi.org/10.1016/S1471-5317(03)00004-X
19. Zhang J., Shi H., Cai M., et al. The Dynamic Properties of SiCp/Al Composites Fabricated by Spark Plasma Sintering with Powders Prepared by Mechanical Alloying Process. Materials Science and Engineering: A. 2009; 527(1-2):218-224. (In Eng.) DOI: https://doi.org/10.1016/j.msea.2009.08.067
20. Laplanche G., Joulain A., Bonneville J., et al. Microstructural and Mechanical Study of an Al Matrix Composite Reinforced by Al-Cu-Fe Icosahedral Particles. Journal of Materials Research. 2010; 25(5):957-965. (In Eng.) DOI: https://doi.org/10.1557/jmr.2010.0118
21. Amosov A.P., Luts A.R., Latuhin E.I., Ermoshkin A.A. Application of SHS Processes for in Situ Preparation of Alumomatrix Composite Materials Discretely Reinforced by Nanodimensional Titanium Carbide Particles (Review). Russian Journal of Non-Ferrous Metals. 2016; 57:106-112. (In Eng.) DOI: https://doi.org/10.3103/S1067821216020024
22. Panfilov A.A., Prusov E.S., Kechin V.A. Problems and Prospects of Development of Production and Application Alyumomatrichnykh of Composite Alloys. Trudy NGTU im. R.Ye. Alekseeva = Works of Alekseev Nizhny Novgorod State Technical University. 2013; (2):210-217. Available at: https://www.elibrary.ru/item.asp?id=20173605 (accessed 15.05.2021). (In Russ., abstract in Eng.)
23. Tan M., Xin Q., Li Z., et al. Influence of SiC and Al2O3 Particulate Reinforcements and Heat Treatments on Mechanical Properties and Damage Evolution of Al-2618 Metal Matrix Composites. Journal of Materials Science. 2001; 36(8):2045-2053. (In Eng.) DOI: https://doi.org/10.1023/A:1017591117670
24. Gupta N., Satyanarayana K.G. The Solidification Processing of Metal-Matrix Composites: The Rohatgi Symposium. JOM. 2006; 58(11):92-94. (In Eng.) DOI: https://doi.org/10.1007/s11837-006-0236-0
25. Song M. Effects of Volume Fraction of SiC Particles on Mechanical Properties of SiC/Al Composites. Transactions of Nonferrous Metals Society of China. 2009; 19(6):1400-1404. (In Eng.) DOI: https://doi.org/10.1016/S1003-6326(09)60040-6
26. Narayanasamy R., Ramesh T., Prabhakar M. Effect of Particle Size of SiC in Aluminium Matrix on Workability and Strain Hardening Behaviour of P/M Composite. Materials Science and Engineering: A. 2009; 504(1-2):13-23. (In Eng.) DOI: https://doi.org/10.1016/j.msea.2008.11.037
27. Wannasin J., Flemings M.C. Fabrication of Metal Matrix Composites by a High-Pressure Centrifugal Infiltration Process. Journal of Materials Processing Technology. 2005; 169(2):143-149. Available at: https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=483666 (accessed 15.05.2021). (In Eng.)
28. Bauria R., Surappa M.K. Processing and Properties of Al–Li–SiСp Composites. Science and Technology of Advanced Materials. 2007; 8(6):494-502. (In Eng.) DOI: https://doi.org/10.1016/j.stam.2007.07.004
29. Sytchenko A.D., Sheveyko A.N., Levashov E.A., Kiryukhantsev-Korneev P.V. Tribological Characteristics and Corrosion Resistance of Coatings Obtained by Electrospark Alloying, Pulsed Cathodic Arc Evaporation and Hybrid Technology Using TiCNiCr and TiCNiCr–Dy2O3 Electrodes. Izvestiya vuzov. Tsvetnaya metallurgiya = News of Higher Schools. Non-Ferrous Metallurgy. 2020; (2):73-79. (In Russ., abstract in Eng.) DOI: https://doi.org/10.17073/0021-3438-2020-2-73-79
30. Kiryukhantsev-Korneev F.V., Phiri J., Gladkov V.I., [et al.]. [Erosion and Abrasion Resistance, Mechanical Properties and Structure of Coatings TiN, Ti–Cr–Al–N и Cr–Al–Ti–N, obtained by CFUBMS method]. Fizikokhimiya poverkhnosti i zashchita materialov = Surface Physicochemistry and Material Protection. 2019; 55(5):546-556. (In Russ.) DOI: https://doi.org/10.1134/S0044185619050127
31. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Levashov E.A. Comparative Study of Coatings Formed by Electrospark Alloying Using TiC–NiCr and TiC–NiCr–Eu2O3 Electrodes. Russian Journal of Non-Ferrous Metals. 2019; 60(6):662-672. (In Eng.) DOI: https://doi.org/10.3103/S1067821219060099
32. Sheveyko A.N., Kuptsov K.A., Kiryukhantsev-Korneev P.V., et al. Hybrid Technology Combining Electrospark Alloying, Cathodic Arc Evaporation and Magnetron Sputtering for Hard Wear-Resistant Coating Deposition. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya = News of Higher Schools. Powder Metallurgy аnd Functional Coatings. 2018;(4):92-103. (In Russ., abstract in Eng.) DOI: https://doi.org/10.17073/1997-308X-2018-4-92-103
33. Qu X., Zhang L., Wu M., Ren S. Review of Metal Matrix Composites with High Thermal Conductivity for Thermal Management Applications. Progress in Natural Science: Materials International. 2011; 21(3):189-197. (In Eng.) DOI: https://doi.org/10.1016/S1002-0071(12)60029-X
34. Lee H.S., Yeo J.S., Hong S.H., Yoon D.J. The Fabrication Process and Mechanical Properties of SiCp/Al–Si Metal Matrix Composites for Automobile Air-Conditioner Compressor Pistons. Journal of Materials Processing Technology. 2001; 113(1-3):202-208. (In Eng.) DOI: https://doi.org/10.1016/S0924-0136(01)00680-X
35. Hunt Jr. W.H. Aluminum Metal Matrix Composites Today. Materials Science Forum. 2000; 331-337:71-84. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/MSF.331-337.71
36. Suganuma K. Whisker/Matrix Interface Microstructure in 6061 Aluminum Composite Reinforced with α-Silicon Nitride Whisker. Composite Interfaces. 1994; 2:15-27. (In Eng.) DOI: https://doi.org/10.1163/156855494X00030
37. Abdoli H., Saebnouri E., Sadrnezhaad S.K., et al. Processing and Surface Properties of Al–AlN Composites Produced from Nanostructured Milled Powders. Journal of Alloys and Compounds. 2010; 490(1-2):624-630. (In Eng.) DOI: https://doi.org/10.1016/j.jallcom.2009.10.121
38. Dun B., Jia X., Jia C., et al. Thermal Conductivity Behavior of SPS Consolidated AlN/Al Composites for Thermal Management Applications. Rare Metals. 2011; 30(2):189-194. (In Eng.) DOI: https://doi.org/10.1007/s12598-011-0222-8
This work is licensed under a Creative Commons Attribution 4.0 License.