УДК 631.316.022
DOI: 10.15507/2658-4123.034.202402.213-228
Обоснование оптимальных параметров функционирования рабочего органа парового культиватора по тяговому сопротивлению
Божко Игорь Владимирович
кандидат технических наук, старший научный сотрудник отдела механизации растениеводства лаборатории механизации полеводства Аграрного научного центра «Донской» (347740, Российская Федерация, г. Зерноград, ул. Научный городок, д. 3), ORCID: https://orcid.org/0000-0002-8423-4079, Researcher ID: E-9518-2016, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Камбулов Сергей Иванович
доктор технических наук, доцент, главный научный сотрудник отдела механизации растениеводства лаборатории механизации полеводства Аграрного научного центра «Донской» (347740, Российская Федерация, г. Зерноград, ул. Научный городок, д. 3), про- фессор кафедры технологий и оборудования переработки продукции АПК Донского государственного технического университета (344003, Российская Федерация, г. Ростов-на-Дону, пл. Гагарина, д. 1), ORCID: https://orcid.org/0000-0001-8712-1478, Researcher ID: A-6156-2019, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Пархоменко Галина Геннадьевна
кандидат технических наук, ведущий научный сотрудник отдела механизации растениеводства лаборатории механизации полеводства Аграрного научного центра «Донской» (347740, Российская Федерация, г. Зерноград, ул. Научный городок, д. 3), ORCID: https://orcid.org/0000-0003-1944-216X, Researcher ID: D-2633-2019, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Рыков Виктор Борисович
доктор технических наук, главный научный сотрудник отдела механизации растениеводства лаборатории механизации полеводства Аграрного научного центра «Донской» (347740, Российская Федерация, г. Зерноград, ул. Научный городок, д. 3), профессор кафедры технологий и оборудования переработки продукции АПК Донского государственного технического университета (344003, Российская Федерация, г.Ростов-на-Дону, пл. Гагарина, д. 1), ORCID: https://orcid.org/0000-0003-1358-9312, Researcher ID: A-6319-2019, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Подлесный Дмитрий Сергеевич
ведущий инженер отдела механизации растениеводства лаборатории механизации полеводства Аграрного научного центра «Донской» (347740, Российская Федерация, г. Зерноград, ул. Научный городок, д. 3), старший преподаватель кафедры технологий и оборудования переработки продукции АПК Донского государственного технического университета (344003, Российская Федерация, Ростовская область, г. Ростов-на-Дону, пл. Гагарина, д. 1), ORCID: https://orcid.org/0000-0002-6069-138X, Researcher ID: L-3658-2017, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Аннотация
Введение. Технологическая операция обработки почвы является энергоемким процессом. Непосредственное влияние на показатель энергозатрат оказывает тяговое сопротивление почвообрабатывающих агрегатов. В связи с этим актуальной является задача разработки конструкции рабочего органа парового культиватора, обеспечивающего снижение тягового сопротивления.
Цель исследования. Поиск оптимальных параметров функционирования рабочего органа парового культиватора путем определения тягового сопротивления, создаваемого рабочим органом.
Материалы и методы. Исследование проводилось в полевых условиях на опытной установке с применением метода полного факторного эксперимента с рабочей моделью, основанной на трехуровневом плане.
Результаты исследования. Посредством регрессионного анализа экспериментальных данных была получена математическая модель, позволяющая определить оптимальные параметры функционирования рабочего органа парового культиватора при выполнении технологической операции обработки почвы.
Обсуждение и заключение. В ходе расчетов было установлено, что наименьшее тяговое сопротивление PТ = 0,72 кН, создаваемое рабочим органом, достигается при следующих значениях: глубина обработки почвы h = 4 см; угол крошения левостороннего и правостороннего плоскорежущих крыльев f = 0°; скорость движения агрегата v = 2,61 м/с. В качестве оптимальных параметров функционирования рабочего органа парового культиватора, определенных при помощи полученной математической модели, угол крошения левостороннего и правостороннего плоскорежущих крыльев рекомендуется принять как f = 0°, а скорость движения агрегата как v = 2,91 м/с. Также, учитывая рекомендуемые оптимальные параметры рабочего органа, возможно рассчитать значение показателя тягового сопротивления при различной глубине обработки почвы. Тяговое сопротивление будет изменяться в пределах 0,79–1,81 кН при глубине обработки почвы от 4 до 12 см. Полученная математическая модель тягового сопротивления, создаваемого рабочим органом, позволит более точно подходить к вопросу проектирования сельскохозяйственных машин.
Ключевые слова: параметры функционирования, тяговое сопротивление, паровой культиватор, математическая модель, регрессионный анализ
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.
Финансирование: работа выполнена в рамках госбюджетной НИР.
Благодарности: авторы выражают благодарность анонимным рецензентам.
Для цитирования: Обоснование оптимальных параметров функционирования рабочего органа парового культиватора по тяговому сопротивлению / И. В. Божко [и др.] // Инженерные технологии и системы. 2024. Т. 34, № 2. С. 213–228. https://doi.org/10.15507/2658-4123.034.202402.213-228
Заявленный вклад соавторов:
И. В. Божко – определение методологии исследования, сбор и анализ аналитических и практических материалов по теме исследования, проведение экспериментальных исследований и обработка полученных данных.
С. И. Камбулов – научное руководство, постановка задачи, обработка полученных данных.
Г. Г. Пархоменко – анализ научных источников по теме исследования, обработка полученных данных.
В. Б. Рыков – определение методологии исследования, обработка полученных данных.
Д. С. Подлесный – проведение экспериментальных исследований, обработка полученных данных.
Все авторы прочитали и одобрили окончательный вариант рукописи.
Поступила в редакцию 25.11.2023; поступила после рецензирования 23.01.2024;
принята к публикации 05.02.2024
СПИСОК ЛИТЕРАТУРЫ
1. Припоров Е. В. Технологические, энергетические и экономические показатели работы универсального парового культиватора // Известия Оренбургского государственного аграрного университета. 2020. № 3 (83). С. 198–202. URL: https://orensau.ru/images/stories/docs/izvestia/izvestia_83_2020_g.pdf (дата обращения: 01.11.2023).
2. Мяло В. В., Мяло О. В., Демчук Е. В. Обоснование основных параметров рабочего органа культиватора для сплошной обработки почвы // Вестник Омского государственного аграрного университета. 2019. № 2 (34). С. 153–164. URL: https://www.omgau.ru/upload/iblock/045/24_34.pdf (дата обращения: 01.11.2023).
3. Свечников П. Г. Оптимальный профиль лапы культиватора-плоскореза // Тракторы и сельхозмашины. 2012. Т. 79, № 1. С. 40. https://doi.org/10.17816/0321-4443-69372
4. Старовойтов С. И. Горизонтальная составляющая тягового сопротивления стрельчатой лапы с переменным углом крошения и с трансформированным лезвием // Вестник Брянской государственной сельскохозяйственной академии. 2016. № 1 (53). С. 79–86. URL: https://www.bgsha.com/download/education/library/1(53)_2016.pdf (дата обращения: 01.11.2023).
5. Исследование влияния параметров рабочих органов и режимов работы культиватора модульного типа на качество поверхностной обработки почвы / О. В. Лисунов [и др.] // Вестник Ульяновской государственной сельскохозяйственной академии. 2023. № 1 (61). С. 190–196. URL: https://vestnik.ulsau.ru/upload/iblock/a9c/vestnik-2023-1(61).pdf (дата обращения: 01.11.2023).
6. Джабборов Н. И., Сергеев А. В. Классификация условий функционирования и определение рациональных конструктивных параметров почвообрабатывающего рабочего органа // АгроЭкоИнженерия. 2020. № 3 (104). С. 48–58. URL: https://agroecoengineering.sznii.ru/images/Jurnal/nomera/zhurnal-104.pdf (дата обращения: 01.11.2023).
7. Теоретическое обоснование конструктивно-технологической схемы многофункционального почвообрабатывающего агрегата / С. Л. Дёмшин [и др.] // Вестник НГИЭИ. 2020. № 2 (105). С. 18–31. URL: http://vestnik.ngiei.ru/?page_id=1825 (дата обращения: 01.11.2023).
8. Граборов К. Н., Жилкин В. А. Компьютерное моделирование деформированного состояния «Почвы» в системе MSC. Patran // Достижения науки и техники АПК. 2007. № 6. С. 17–19. URL: https://clck.ru/39xbT4 (дата обращения: 01.11.2023).
9. 3D Finite Element Analysis of Tine Cultivator and Soil Deformation / M. Hashaam [et al.] // Research in Agricultural Engineering. 2023. Vol. 69, Issue 3. P. 107–117. https://doi.org/10.17221/58/2022-RAE
10. Chappell A., Webb N. P. Using Albedo to Reform Wind Erosion Modelling, Mapping and Monitoring // Aeolian Research. 2016. Vol. 23. P. 63–78. https://doi.org/10.1016/j.aeolia.2016.09.006
11. Effect of Different Working and Tool Parameters on Performance of Several Types of Cultivators / Y. Abbaspour-Gilandeh [et al.] // Agriculture. 2020. Vol. 10, Issue 5. P. 145. https://doi.org/10.3390/agriculture10050145
12. Effects of Fallow Tillage on Winter Wheat Yield and Predictions Under Different Precipitation Types / Y. Feng [et al.] // PeerJ. 2021. Vol. 9. Article no. e12602. https://doi.org/10.7717/peerj.12602
13. Konrad J. M., Lebeau M. Capillary-Based Effective Stress Formulation for Predicting Shear Strength of Unsaturated Soils // Canadian Geotechnical Journal. 2015. Vol. 52, Issue 12. P. 2067–2076. https://doi.org/10.1139/cgj-2014-0300
14. Seasonal and Inter-Annual Variability of Soil Moisture Stress Function in Dryland Wheat Field, Australia / V. R. Akuraju [et al.] // Agricultural and Forest Meteorology. 2017. Vol. 217. P. 450–451. https://doi.org/10.1016/j.agrformet.2016.10.007
15. Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat / Y. Fang [et al.] // Frontiers in Plant Science. 2017. Vol. 8. Article no. 00672. https://doi.org/10.3389/fpls.2017.00672
16. Маслов Г. Г., Юдина Е. М., Журий И. А. Эффективность поверхностной обработки почвы стерневым многофункциональным культиватором // Тракторы и сельхозмашины. 2018. Т. 85, № 3. C. 7–11. https://doi.org/10.17816/0321-4443-66365
17. The Random Vibrations of the Active Body of the Cultivators / P. Cardei [et al.] // Agriculture. 2023. Vol. 13. Article no. 1565. https://doi.org/10.20944/preprints202307.1517.v1
18. Okoko P., Umani K. C., Onwe D. N. Performance Evaluation of a Spring Tine Cultivator in a Sandy Loam Soil // Agricultural Engineering International: CIGR Journal. 2023. Vol. 25, Issue 2. P. 21–33. URL: https://clck.ru/39x8LA (дата обращения: 01.11.2023).
19. Sun C., Zhou J., Zhao J. Traction Resistance Estimation Based on Multi-Method Fusion for Distributed Drive Agricultural Vehicles // IEEE Sensors Journal. 2022. Vol. 22, Issue 10. P. 9580–9588. https://doi.org/10.1109/JSEN.2022.3162652
Контент доступен под лицензией Creative Commons Attribution 4.0 License.