PDF To download article.

 

DOI: 10.15507/2658-4123.031.202103.336-348

 

Possibilities of Obtaining Biogas from Manure and Amaranth

 

Julia V. Karaeva
Leading Researcher, Head of the Power Systems and Technologies Laboratory, Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences (2/31 Lobachevsky St., Kazan 420111, Russian Federation), Cand.Sc. (Engr.), Researcher ID: F-6917-2017, ORCID: https://orcid.org/0000-0002-9275-332X, This email address is being protected from spambots. You need JavaScript enabled to view it.

Svetlana S. Timofeeva
Senior Researcher of the Power Systems and Technologies Laboratory, Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences (2/31 Lobachevsky St., Kazan 420111, Russian Federation), Cand.Sc. (Engr.), Researcher ID: AAZ-5531-2020, ORCID: https://orcid.org/0000-0003-4168-2442, This email address is being protected from spambots. You need JavaScript enabled to view it.

Introduction. The use of biomass allows increasing the rate of biogas formation and its specific yield. This work aims to study the kinetics of methanogenesis and determine the optimal duration of digestion and organic load, which are the main indicators of the technological process of biogas formation.
Materials and Methods. The substrate (dairy manure, biomass of amaranth) was the study object. Experimental studies were carried out using a laboratory biogas plant. The computer program (certificate No. 2018662045) was used to obtain modified Gompertz models describing the kinetics of biogas formation. Based on the obtained data, the hydraulic retention time and organic loading rate (the key parameters in the design of biogas plants were determined).
Results. The paper presents the experimental studies results of the biogas formation kinetics when using dry amaranth biomass. The Gompertz mathematical models were obtained. Methane-tank control parameters (hydraulic retention time and organic loading rate) were obtained for anaerobic digestion of a new substrate.
Discussion and Conclusion. The use of new co-substrate Amaranthus retroflexus L. allowed increasing the specific biogas yield from dairy manure by 52.2 % and the ultrasonic pre-treatment in combination with the herbal supplement by 89.1 %. The optimal hydraulic retention time value was 10 days and organic loading rate was 4.1 kg of volatile solids per m3 of digester per day.

Keywords: biogas, co-digestion, dairy manure, biomass, hydraulic retention time, amaranth

Conflict of interest: The authors declare no conflict of interest.

For citation: Karaeva J.V., Timofeeva S.S. Possibilities of Obtaining Biogas from Manure and Amaranth. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2021; 31(3):336-348. DOI: https://doi.org/10.15507/2658-4123.031.202103.336-348

Contributions of the authors:
J. V. Karaeva – formulating the research task, conducting experiments, analysis of the results, and conclusions.
S. S. Timofeeva – conducting experimental research, analyzing and drawing conclusions.

All authors have read and approved the final manuscript.

Submitted 26.03.2021; approved after reviewing 21.04.2021;
accepted for publication 10.06.2021

 

REFERENCES

1. Kapoor R., Ghosh P., Kumar M., et al. Valorization of Agricultural Waste for Biogas Based Circular Economy in India: A Research Outlook. Bioresource Technology. 2020; 304. (In Eng.) DOI: https://doi. org/10.1016/j.biortech.2020.123036

2. Abad V., Avila R., Vicent T., Font X. Promoting Circular Economy in the Surroundings of an Organic Fraction of Municipal Solid Waste Anaerobic Digestion Treatment Plant: Biogas Production Impact and Economic Factors. Bioresource Technology. 2019; 283:10-17. (In Eng.) DOI: https://doi.org/10.1016/j.biortech.2019.03.064

3. Monlau F., Francavilla M., Sambusiti C., et al. Toward a Functional Integration of Anaerobic Digestion and Pyrolysis for a Sustainable Resource Management. Comparison between Solid-Digestate and Its Derived Pyrochar as Soil Amendment. Applied Energy. 2016; 169:652-662. (In Eng.) DOI: https://doi.org/10.1016/j.apenergy.2016.02.084

4. Tayibi S., Monlau F., Marias F., et al. Coupling Anaerobic Digestion and Pyrolysis Processes for Maximizing Energy Recovery and Soil Preservation According to the Circular Economy Concept. Journal of Environmental Management. 2021; 279. (In Eng.) DOI: https://doi.org/10.1016/j.jenvman.2020.111632

5. González-Arias J., Fernández C., Rosas J.G., et al. Integrating Anaerobic Digestion of Pig Slurry and Thermal Valorisation of Biomass. Waste and Biomass Valorization. 2020; 11:6125-6137. (In Eng.) DOI: https://doi.org/10.1007/s12649-019-00873-w

6. Feng Q., Lin Yu. Integrated Processes of Anaerobic Digestion and Pyrolysis for Higher Bioenergy Recovery from Lignocellulosic Biomass: a Brief Review. Renewable and Sustainable Energy Reviews. 2017; 77:1272-1287. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2017.03.022

7. Nigam N., Shanker K., Khare P. Valorisation of Residue of Mentha arvensis by Pyrolysis: Evaluation of Agronomic and Environmental Benefits. Waste and Biomass Valorization. 2019; 9:1909-1919. (In Eng.) DOI: https://doi.org/10.1007/s12649-017-9928-7

8. Giwa A.S., Xu H., Chang F., et al. Pyrolysis Coupled Anaerobic Digestion Process for Food Waste and Recalcitrant Residues: Fundamentals, Challenges, and Considerations. Energy Science and Engineering. 2019; 7(6):2250-2264 (In Eng.) DOI: https://doi.org/10.1002/ese3.503

9. González R., González J., Rosas J.G., et al. Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. Journal of Carbon Research. 2020; 6(2). (In Eng.) DOI: https://doi.org/10.3390/c6020043

10. Karaeva J.V., Timofeeva S.S., Bashkirov V.N., et al. Thermochemical Processing of Digestate from Biogas Plant for Recycling Dairy Manure and Biomass. Biomass Conversion and Biorefinery. 2021. (In Eng.) DOI: https://doi.org/10.1007/s13399-020-01138-6

11. Zhou J., Yang J., Yu Q., et al. Different Organic Loading Rates on the Biogas Production during the Anaerobic Digestion of Rice Straw: A Pilot Study. Bioresource Technology. 2017; 244(1):865-871. (In Eng.) DOI: https://doi.org/10.1016/j.biortech.2017.07.146

12. Jiang J., He Sh., Kang X., et al. Effect of Organic Loading Rate and Temperature on the Anaerobic Digestion of Municipal Solid Waste: Process Performance and Energy Recovery. Frontiers in Energy Research. 2020. (In Eng.) DOI: https://doi.org/10.3389/fenrg.2020.00089

13. Musa M.A., Idrus S., Hasfalina C.M., Daud N.N.N. Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate. International Journal of Environmental Research and Public Health. 2018; 15(10). (In Eng.) DOI: https://doi.org/10.3390/ijerph15102220

14. Shi X.-Sh., Dong J.-J., Yu J.-H., et al. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors. BioMed Research International. 2017. (In Eng.) DOI: https://doi.org/10.1155/2017/2457805

15. Pramanik S.K., Suja F.B., Porhemmat M., Pramanik B.K. Performance and Kinetic Model of a Single-Stage Anaerobic Digestion System Operated at Different Successive Operating Stages for the Treatment of Food Waste. Processes. 2019; 7(9). (In Eng.) DOI: https://doi.org/10.3390/pr7090600

16. Sarker S., Lamb J.J., Hjelme D.R., Lien K.M. A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants. Applied Sciences. 2019; 9(9). (In Eng.) DOI: https://doi.org/10.3390/app9091915

17. Abbas Y., Jamil F., Rafiq S., et al. Valorization of Solid Waste Biomass by Inoculation for the Enhanced Yield of Biogas. Clean Technologies and Environmental Policy. 2020; 22:513-522. (In Eng.) DOI: https://doi.org/10.1007/s10098-019-01799-6

18. Esteves E.M.M., Herrera A.M.N., Esteves V.P.P., Morgado C.R.V. Life Cycle Assessment of Manure Biogas Production: A Review. Journal of Cleaner Production. 2019; 219:411-423. (In Eng.) DOI: https://doi.org/10.1016/j.jclepro.2019.02.091

19. Sevillano C.A., Pesantes A.A., Carpio E.P., et al. Anaerobic Digestion for Producing Renewable Energy – The Evolution of This Technology in a New Uncertain Scenario. Entropy. 2021; 23(2). (In Eng.) DOI: https://doi.org/10.3390/e23020145

20. Sukhesh M.J., Rao P.V. Synergistic Effect in Anaerobic Co-Digestion of Rice Straw and Dairy Manure – A Batch Kinetic Study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019; 41(17):2145-2156 (In Eng.) DOI: https://doi.org/10.1080/15567036.2018.1550536

21. Alhraishawi A.A., Alani W.K. The Co-Fermentation of Organic Substrates: A Review Performance of Biogas Production under Different Salt Content. Journal of Physics: Conference Series. 2018; 1032. (In Eng.) DOI: https://doi.org/10.1088/1742-6596/1032/1/012041

22. Awasthi M.K., Sarsaiya S., Wainaina S., et al. A Critical Review of Organic Manure Biorefinery Models toward Sustainable Circular Bioeconomy: Technological Challenges, Advancements, Innovations, and Future Perspectives. Renewable & Sustainable Energy Reviews. 2019; 111:115-131. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2019.05.017

23. Begum S., Ahuja S., Anupoju G.R., et al. Operational Strategy of High Rate Anaerobic Digester with Mixed Organic Wastes: Effect of Co-Digestion on Biogas Yield at Full Scale. Environmental Technology. 2020; 41(9):1151-1159. (In Eng.) DOI: https://doi.org/10.1080/09593330.2018.1523232

24. Lv Z.Y., Feng L., Shao L.J., et al. The Effect of Digested Manure on Biogas Productivity and Microstructure Evolution of Corn Stalks in Anaerobic Cofermentation. Biomed Research International. 2018; (In Eng.) DOI: https://doi.org/10.1155/2018/5214369

25. Dębowski M., Kisielewska M., Kazimierowicz J., et al. The Effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock. Energies. 2020; 13(9). (In Eng.) DOI: https://doi.org/10.3390/en13092186

26. Rincón B., Fernández-Rodríguez M.J., Lama-Calvente D., Borja R. The Influence of Microalgae Addition as Co-Substrate in Anaerobic Digestion Processes. In: E. Jacob-Lopes, ed. Microalgal Biotechnology. IntechOpen; 2018. p. 899-927. (In Eng.) DOI: https://doi.org/10.5772/intechopen.75914

27. Shah F.A., Mahmood Q., Rashid N., et al. Co-Digestion, Pretreatment and Digester Design for Enhanced Methanogenesis. Renewable and Sustainable Energy Reviews. 2015; 42:627-642. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2014.10.053

28. Kulichkova G.I., Ivanova T.S., Köttner M., et al. Plant Feedstocks and Their Biogas Production Potentials. The Open Agriculture Journal. 2020; 14:219-234. (In Eng.) DOI: https://doi. org/10.2174/1874331502014010219

29. Karaeva J.V., Kamalov R.F., Kadiyrov A.I. Production of Biogas from Poultry Waste Using the Biomass of Plants from Amaranthaceae Family. IOP Conference Series: Earth and Environmental Science. 2019; 288. (In Eng.) DOI: https://doi.org/10.1088/1755-1315/288/1/012096

30. Garcia N.H., Mattioli A., Gil A., et al. Evaluation of the Methane Potential of Different Agricultural and Food Processing Substrates for Improved Biogas Production in Rural Areas. Renewable and Sustainable Energy Reviews. 2019; 112. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2019.05.040

31. Selvaraj B., Krishnasamy S., Munirajan S., et al. Kinetic Modelling of Augmenting Biomethane Yield from Poultry Litter by Mitigating Ammonia. International Journal of Green Energy. 2018; 15(12):766-772. (In Eng.) DOI: https://doi.org/10.1080/15435075.2018.1529580

32. Wang Z.Q., Yun S.N., Xu H.F., et al. Mesophilic Anaerobic Co-Digestion of Acorn Slag Waste with Dairy Manure in a Batch Digester: Focusing on Mixing Ratios and Bio-Based Carbon Accelerants. Bioresource Technology. 2019; 286. (In Eng.) DOI: https://doi.org/10.1016/j.biortech.2019.121394

33. Caruso M.C., Braghieri A., Capece A., et al. Recent Updates on the Use of Agro-Food Waste for Biogas Production. Applied Sciences. 2019; 9(6). (In Eng.) DOI: https://doi.org/10.3390/app9061217

34. Rusanowska P., Zieliński M., Dudek M.R., Dębowski M. Mechanical Pretreatment of Lignocellulosic Biomass for Methane Fermentation in Innovative Reactor with Cage Mixing System. Journal of Ecological Engineering. 2018; 19(5):219-224. (In Eng.) DOI: https://doi.org/10.12911/22998993/89822

 

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla