PDF To download article.

UDK 621.4:620.22-022.532

DOI: 10.15507/2658-4123.030.202004.576-593

 

Optimization of Mechanical Activation Modes for UHMWPE Dry Mixed Powders and Nanomodificators in the Planetary Ball Mill Pulverisette 7

 

Vladimir N. Vodyakov
Professor of Chairs of Mechanization of Agricultural Processing of Institute of Mechanics and Power Engineering, National Research Mordovia State University (68 Bolshevistskaya St., Saransk 430005, Russian Federation), D.Sc. (Engineering), ORCID: https://orcid.org/0000-0002-4687-1798, This email address is being protected from spambots. You need JavaScript enabled to view it.

Kseniya A. Kulikovskaya
Postgraduate Student of Chairs of Mechanization of Agricultural Processing of Institute of Mechanics and Power Engineering, National Research Mordovia State University (68 Bolshevistskaya St., Saransk 430005, Russian Federation), ORCID: https://orcid.org/0000-0001-9386-0939, This email address is being protected from spambots. You need JavaScript enabled to view it.

Introduction. Currently, in various technology areas, bronze, cast iron and other antifriction metals are replaced by polymer composites, which extend significantly service life of tribocoupling. An advanced antifriction polymer is ultra-high-molecular-weight polyethylene. The study deals with determining the optimal specific energy consumption for the mechanical activation of the polymer dry mixed powders and nanomodifiers in the planetary ball mill Pulverisette 7, which ensure the best complex of physico-mechanical and rheological properties of nanocomposites.
Materials and Methods. In this work, we used GUR 4120 Ticona ultra-high-molecular-weight polyethylene with a molecular weight of 5 million, a Tuball Matrix Beta concentrate of activated carbon nanotubes at a concentration of 0.1%, calculated with reference to carbon nanotubes, and hydrophobic nanocrystalline silicon dioxide with a dispersion of 20 nm at the same concentration. Mechanical co-activation of polymer powders and nanomodifiers, when varying the specific energy consumption, was carried out in the planetary ball mill Pulverisette 7. The production of films from powders, for studying the elastic-strength and rheological characteristics of nanocomposites, was carried out with the use of the hydraulic press Gibitre. Tests were carried out respectively on the tensile testing machine UAI-7000 M and the rheometer Haake MARS III.
Results. It has been established that the best physico-mechanical and rheological properties of nanocomposites are with specific energy consumption for mechanical activation of 3,000‒3,200 J/g that allows us to consider them optimal. The mechanical activation of ultra-high-molecular-weight polyethylene powder, reducing slightly the elasticity modulus and tensile strength of thermally pressed samples, does not affect the dynamic viscosity of melts at an energy consumption of 650‒4,550 J/g.
Discussion and Conclusion. The use of carbon nanotubes and nanocrystalline silicon dioxide at a concentration of 0.1% can significantly improve the physical-mechanical and rheological properties of the polymer with energy costs of 3,000‒3,200 J/g for mechanical activation in planetary ball mills. Nanocrystalline silicon dioxide is a more effective modifier that can be explained by its better dispersion in the polymer matrix due to the lower tendency of nanoparticles to agglomerate.

Keywords: ultra-high-molecular-weight polyethylene, carbon nanotubes, nanocrystalline silicon dioxide, nanocomposite, mechanical activation, planetary ball mill, specific energy consumption, physico-mechanical characteristics, rheological characteristics

For citation: Vodyakov V.N., Kulikovskaya K.A. Optimization of Mechanical Activation Modes for UHMWPE Dry Mixed Powders and Nanomodificators in the Planetary Ball Mill Pulverisette 7. Inzhenerernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2020; 30(4):576-593. DOI: https://doi.org/10.15507/2658-4123.030.202004.576-593

Contribution of the authors: V. N. Vodyakov – formulation of the research task, development of methods and editing the article; K. A. Kulikovskaya – literary data analysis, experimental works and statistical processing of the obtained results.

All authors have read and approved the final manuscript.

Received 05.05.2020; revised 10.07.2020; published online 30.12.2020

 

REFERENCES

1. Kakhramanov N.T., Gasumova G.Sh., Osipchik V.S., et al. Wearproof Polymeric Materials. Structure and Properties. Plasticheskie Massy = Plastics. 2017; (11-12):8-15. Available at: https://www.plastics-news.ru/jour/article/view/213 (accessed 21.10.2020). (In Russ.)

2. Selyutin G.E., Gavrilov Y.Y., Voskresenskaya E.N., et al. Composite Materials Based on Ultrahigh-Molecular Polyethylene: Properties, Outlooks for Use. Khimiya v interesakh ustoychivogo razvitiya = Chemistry for Sustainable Development. 2010; 18(3):375-388. Available at: http://sciact.catalysis.ru/ru/public/article/5698 (accessed 21.10.2020). (In Russ.)

3. Kakhramanov N.T., Azizov A.G., Osipchik V.S., et al. Nanostructured Composites and Polymeric Materials Technology. Plasticheskie Massy. 2016; (1-2):49-57. Available at: https://www.plastics-news.ru/jour/article/view/18?locale=ru_RU (accessed 21.10.2020). (In Russ.)

4. Panin V.Ye., Panin S.V., Kornienko L.A., et al. Effect of Mechanical Activation of Ultra-High-Molecular-Weight Polyethylene on Its Mechanical and Triboengineering Properties. Trenie i iznos = Journal of Friction and Wear. 2010; 31(2):168-176. Available at: https://mpri.org.by/izdaniya/trenie-i-iznos/2010-tom-31-n-1-6.html (accessed 21.10.2020). (In Russ.)

5. Gabriel M.C., Carvalho B.M., Pinheiro L.A., et al. Structural Modifications of Ultra-High Molecular Weight Polyethylene (UHMWPE) Processed in Attritor Type Mill. In: 7th International Latin American Conference on Powder Technology, November 08-10. Atibaia; 2009. Рp. 337–341. Available at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/116/47116488.pdf (accessed 21.10.2020).

6. Gabriel M.C., Mendes L.B., Carvalho B.M., et al. High-Energy Mechanical Milling of Ultra-High Molecular Weight Polyethylene (UHMWPE). Materials Science Forum. 2010; 660-661:325-328. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/msf.660-661.325

7. Medvedeva Ye.V., Cherdyntsev V.V. [Structure of Polymer Composite Materials Containing Non-Uniform Inorganic Inclusions]. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2013; (5). Available at: http://www.science-education.ru/ru/article/view?id=10459 (accessed 21.10.2020). (In Russ.)

8. Panin S.V., Kornienko L.A., Aleksenko V.O., et al. Influence of Nanofibers/Nanotubes on Physical-Mechanical and Tribotechnical Properties of Polymer Composites Based on Thermoplastic UHMWPE and PEEK Matrixes. Izvestiya vysshikh uchebnykh zavedeniy. Seriya “Khimiya i khimicheskaya tekhnologiya” = Russian Journal of Chemistry and Chemical Technology. 2017; 60(9):45-51. Available at: http://journals.isuct.ru/ctj/article/view/200 (accessed 21.10.2020). (In Russ.) .

9. Campo N., Visco A.M. Incorporation of Carbon Nanotubes into Ultra High Molecular Weight Polyethylene by High Energy Ball Milling. International Journal of Polymer Analysis and Characterization. 2010; 15(7):438-449. (In Eng.) DOI: https://doi.org/10.1080/1023666X.2010.510110

10. Puangmalee N., Sonjaitham N., Saengthip S., et al. Influence of SiO2 Micro- Particles on Microstructure, Mechanical Properties and Wear Resistance of UHMWPE Based Composite under Dry Sliding Friction. Key Engineering Materials. 2018; 769:152-157. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/kem.769.152

11. Panin S.V., Aleksenko V.O., Kornienko L.A., et al. Mechanical and Tribotechnical Properties of Multicomponent Solid Lubricant Composites Based on Ultra High Molecular Weight Polyethylene. Izvestiya vysshikh uchebnykh zavedeniy. Seriya “Khimiya i khimicheskaya tekhnologiya” = Russian Journal of Chemistry and Chemical Technology. 2018; 61(11):88-95. (In Russ.) DOI: https://doi.org/10.6060/ivkkt.20186111.11y

12. Panin S.V., Kornienko L.A., Thuc N.X., et al. Role of Micro- and Nanofillers in Abrasive Wear of Composites Based on Ultra-High Molecular Weight Polyethylene. Advanced Materials Research. 2014; 1040:148-154. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/amr.1040.148

13. Fedorov L.Yu., Karpov I.V., Ushakov A.V., et al. Manufacturing and Applying the UHMWPE Modified of Nanoparticles. Reshetnevskie chteniya = Readings in Memory of Reshetnev. 2013; 1(17):482-484. Available at: https://cyberleninka.ru/article/n/poluchenie-i-primenenie-modifitsirovannogo-nanochastitsami-sverhvysokomolekulyarnogo-polietilena/viewer (accessed 21.10.2020). (In Russ.)

14. Zabolotnov A.S., Brevnov P.N., Akulshin V.V. [Wear Resistance of Composite Materials Based on Ultra-High Molecular Weight Polyethylene with Different Types of Fillers]. Vse materialy. Entsiklopedicheskiy spravochnik = All Materials. Encyclopedic Handbook. 2017; (12):13-19. Available at: https://www.researchgate.net/publication/322085046_Iznosostojkost_kompozicionnyh_materialov_na_osnove_sverhvysokomolekularnogo_polietilena_s_napolnitelami_raznogo_tipa/comments (accessed 21.10.2020). (In Russ.)

15. Maksimkin A.V., Kharitonov A.V., Mostovaya A.P., et al. Bulk Oriented Nanocomposites of Ultrahigh Molecular Weight Polyethylene Reinforced with Fluorinated Multiwalled Carbon Nanotubes with Nanofibrillar Structure. Composites Part B: Engineering. 2016; 94:292-298. (In Eng.) DOI: https://doi.org/10.1016/j.compositesb.2016.03.061

16. Mohammed A.S. UHMWPE Nanocomposite Coatings Reinforced with Alumina (Al2O3) Nanoparticles for Tribological Applications. Coatings. 2018; 8(8):280. (In Eng.) DOI: https://doi.org/10.3390/coatings8080280

17. Gulbin V.N., Tcherdyntsev V.V. Structure and Microwave Absorbing Properties of Carbon-Filled Ultra-High Molecular Weight Polyethylene. Science and Engineering of Composite Materials. 2018; 25(1):153-157. (In Eng.) DOI: https://doi.org/10.1515/secm-2015-0431

18. Ni Z., Pang W., Chen G., et al. The Influence of Irradiation on Thermal and Mechanical Properties of UHMWPE/GO Nanocomposites. Russian Journal of Applied Chemistry. 2017; 90(11):1876-1882. (In Eng.) DOI: https://doi.org/10.1134/s1070427217110234

19. Lawal D., Ali A.B., Mohammed A.S. Tribological Investigations of Carbon Nanotube-Reinforced Polymer (UHMWPE) Nanocomposites Using Taguchi Methodology. Journal of Applied Polymer Science. 2016; 133(40). (In Eng.) DOI: https://doi.org/10.1002/app.44018

20. Poluboyarov V.A., Solonenko O.P., Zhdanok A.A., et al. Comparison of the Efficiency of the Mills “AGO-2” and “Activator-2SL” at the Mechanical Activation of Titanium Powder. Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tekhnika i tekhnologii = Journal of Siberian Federal University. Engineering & Technologies. 2017; 10(5):646-656. (In Russ.) DOI: https://doi.org/10.17516/1999-494X-2017-10-5-646-656

21. Verigin Yu.A., Malikova L.Yu., Verigina Ya.Yu. [Development of the Regularities for Optimization of the Processes of Mechanical Crushing of Materials in Construction]. Polzunovskiy vestnik = Polzunov’s Bulletin. 2014; (1):47-52. Available at: http://elib.altstu.ru/journals/Files/pv2014_01/pdf/047verigin.pdf (accessed 21.10.2020). (In Russ.)

22. Boronenko M.P., Lavrikov V.V., Seregin A.Ye. Energy Control and Grinding Mechanoactivation Planetary Mill AGO-3. Vestnik Yugorskogo gosudarstvennogo universiteta = Yugra State University Bulletin. 2016; (2). Available at: https://cyberleninka.ru/article/n/kontrol-energii-izmelcheniya-i-mehanoaktivatsii-planetarnoy-melnitsy-ago-3 (accessed 21.10.2020). (In Russ.)

23. Kuzmich Yu.V., Korotkov V.G. Simulation of the Energy Characteristics of the Planetary Mill. Trudy Kolskogo nauchnogo tsentra RAN = Works of the Kola Scientific Center of the RAS. 2015; (5):380-384. Available at: https://cyberleninka.ru/article/n/model-energeticheskih-harakteristik-planetarnoy-melnitsy (accessed 21.10.2020). (In Russ.)

24. Zhornik V.I., Kovaleva S.A., Belotserkovskiy M.A., et al. Influence of Mechanical Activation on Structure of Composite Powders Based on Ultrahigh-Molecular Weigth Polyethylene Filled by Boron Carbide. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya B. Promyshlennost. Prikladnye nauki = Polotsk State University Bulletin. Series B. Industry. Applied Sciences. 2018; (11):58-63. (In Russ.)

25. Okhlopkova A.A., Okhlopkova T.A., Borisova R.V. [Structural Formation Processes Management in Polymer Composite Materials Based on UHMWPE]. Prirodnye resursy Arktiki i Subarktiki = Arctic and Subarctic Natural Resources. 2015; (2):85-90. Available at: https://cyberleninka.ru/article/n/upravlenie-protsessami-strukturoobrazovaniya-v-polimernyh-kompozitsionnyh-materialah-na-osnove-svmpe-1 (accessed 21.10.2020). (In Russ.)

26. Kulikovskaya K.A., Vodyakov V.N. Effects Provided by the Ultra-Low Concentrations of Carbon Nanotubes on the Stress-Related, Rheological and Tribological Characteristics of Ultra-High-Molecular-Weight Polyethylene. Vestnik Kazanskogo tekhnologicheskogo universiteta = Kazan Technological University Bulletin. 2019; 22(2):75-78. Available at: http://sciencerm.ru/Publications/Details/43 (accessed 21.10.2020). (In Russ.)

27. Kulikovskaya K.A., Vodyakov V.N., Shabarin A.A. Investigation of Physico-Mechanical and Rheological Characteristics of Nanocomposites of Ultrahigh-Molecular Polyethylene. Izvestiya vysshikh uchebnykh zavedeniy. Seriya “Khimiya i khimicheskaya tekhnologiya” = Russian Journal of Chemistry and Chemical Technology. 2019; 62(11):112-116. (In Russ.) DOI: https://doi.org/10.6060/ivkkt.20196211.5988

28. Arrigo R., Teresi R., Gambarotti C., et al. Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites. Materials. 2018; 11(3):383. (In Eng.) DOI: https://doi.org/10.3390/ma11030383

  

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla