PDF To download article.

UDK 664.8.002.1

DOI: 10.15507/2658-4123.030.202002.200-218

 

Modeling the Process of Heat Treatment of Liquid Products in a Plate Heat Exchanger Using an Integrated Energy-Substituting Installation

 

Yuriy B. Gerber
Professor of Chair of Technology and Equipment for Production and Processing of Animal Products, Academy of Bioresources and Environmental Management of Vernadsky Crimean Federal University (Agrarnoye, Simferopol 295492, Russia), D.Sc. (Engineering), Researcher ID: B-6690-2019, ORCID: https://orcid.org/0000-0003-3224-6833, This email address is being protected from spambots. You need JavaScript enabled to view it.

Aleksandr V. Gavrilov
Associate Professor of Chair of Technology and Equipment for Production and Processing of Animal Products, Academy of Bioresources and Environmental Management of Vernadsky Crimean Federal University (Agrarnoye, Simferopol 295492, Russia), Ph.D. (Engineering), Researcher ID: AAH-5137-2019, ORCID: https://orcid.org/0000-0003-3382-0307, This email address is being protected from spambots. You need JavaScript enabled to view it.

Natalya S. Kiyan
Postgraduate of Chair of Technology and Equipment for Production and Processing of Animal Products, Academy of Bioresources and Environmental Management of Vernadsky Crimean Federal University (Agrarnoye, Simferopol 295492, Russia), Researcher ID: AAH-5147-2019, ORCID: https://orcid.org/0000-0001-7043-8962, This email address is being protected from spambots. You need JavaScript enabled to view it.

Introduction. Currently, the issue of reducing electrical energy consumption in the technologies of processing agricultural products, in particular, milk is topical. In large part, these costs are associated with the implementation of heat treatment processes. The reduction of electrical energy consumption can be achieved in several ways, one of which is the development and application of solar-powered installations. In this case, the consumption of traditional electrical energy is significantly reduced, but the manufactures have the task of coordinating the installation parameters and the real production conditions of enterprises.
Materials and Methods. The study examined energy consumption in milk processing technologies, plate heat exchanger operation modes and heliocollector performance indicators. The heating temperature of the coolant and the product was determined with an instrument complex that allows registering the temperature values in 8 different control points and transmitting the received signals to the personal computer hard disk. The method for defining the parameters of the plant for preparing the coolant in the technologies of milk processing with the use of a complex energy-substituting unit is proposed. The new technique provides a reduction of electric energy consumption from 30 to 70%.
Results. The consumption of electrical energy for thermal processes can be reduced by using solar energy. To solve the problem of optimizing the ratio of product consumption, heating area in the heat exchanger, the area of the solar collectors of the energy-substituting installation, it is recommended to use the obtained graphical dependencies and the formula for determining the area of the solar collectors.
Discussion and Conclusion. It is possible to determinate the area of solar collectors of complex energy-substituting installation for real production conditions through using the obtained analytical dependence taking into account the dependence the specified parameter on a temperature mode of heating, the area of a surface of heating in the heat exchanger, and weight of milk being processed per unit of time. The obtained graphical dependencies make it possible to determine the product consumption and heating area for the given heating temperature values.

Keywords: solar collector, complex energy substitution unit, heat carrier, energy source, heating surface, pasteurization temperature, milk, energy saving, heat exchange, thermal power, surface area

For citation: Gerber Yu.В., Gavrilov A.V., Kiyan N.S. Modeling the Process of Heat Treatment of Liquid Products in a Plate Heat Exchanger Using an Integrated Energy-Substituting Installation. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2020; 30(2):200-218. DOI: https://doi.org/10.15507/2658-4123.030.202002.200-218

Contribution of the authors: Yu. B. Gerber – general idea, formulation of the purpose and objectives of the experiment, management of the studies; A. V. Gavrilov – technical support for the experiments, justification of the heliocollector module; N. S. Kiyan – conducting experiments.

All authors have read and approved the final manuscript.

Received 02.10.2019; revised 16.11.2019; published online 30.06.2020

 

REFERENCES

1. Gerber Y.B., Gavrilov A.V., Verbitskiy A.P., et al. Using Integrated Energy Replacing Device for Milk Processing. Izvestiya selskokhozyaystvennoy nauki Tavridy = News of Taurida Agricultural Science. 2016; (7):52-59. Available at: https://cyberleninka.ru/article/n/ispolzovanie-kompleksnogo-energozameschayuschego-ustroystva-dlya-pererabotki-moloka/viewer (accessed 30.03.2020). (In Russ.)

2. Gerber Y.B., Gavrilov A.V. Determination of Parameters of Section of Preheat of Pasteurizer with the Use of KEU. Izvestiya selskokhozyaystvennoy nauki Tavridy = News of Taurida Agricultural Science. 2016; (5):56-61. Available at: https://cyberleninka.ru/article/n/opredelenie-parametrov-sektsii-predvaritelnogo-podogreva-pasterizatora-s-ispolzovaniem-keu (accessed 30.03.2020). (In Russ.)

3. Gerber Y.B., Gavrilov A.V., Kiyan N.S. Using Integrated Energy Substituting Device in Manufacturing Technology of Functional Foods “Atsidolakt”. Izvestiya selskokhozyaystvennoy nauki Tavridy = News of Taurida Agricultural Science. 2016; (6):60-66. Available at: https://e.lanbook.com/reader/journalArticle/346730/#1 (accessed 30.03.2020). (In Russ.)

4. Botvinnikova V.V., Krasulya O.N. Formulation of Consumer Properties of Fermented Milk Products on the Basis of Ultrasound Exposure. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: pishchevye i biotekhnologii = Bulletin of the South Ural State University. Series: Food and Biotechnology. 2015; 3(4):30-40. (In Russ.) DOI: https://doi.org/10.14529/food150405

5. Dorovskikh V.I., Dorovskikh D.V., Al-Lami S.F.H. Justification Criteria for Assessing the Effectiveness of Use Equipment for Primary Processing of Milk. Nauka v Tsentralnoy Rossii = Science in the Central Russia. 2016; (5):62-69. Available at: https://clck.ru/MjF8t (accessed 30.03.2020). (In Russ.)

6. Pasko O.V., Germanskaya L.G., Penzina O.V. Quality Management of the Cottage Cheese Bioproduct with Use of the HASSP Principles. Agrarnyy Vestnik Urala = Agrarian Bulletin of the Urals. 2014; (8):34-37. Available at: http://avu.usaca.ru/ru/issues/67/articles/1700 (accessed 30.03.2020). (In Russ.)

7. Gerber Y.B., Gavrilov A.V. To the Question of Designing a Modern Dairy Processing Plant. Izvestiya selskokhozyaystvennoy nauki Tavridy = News of Taurida Agricultural Science. 2018; (15):97-106. (In Russ.)

8. Gerber Yu.B., Gavrilov A.V., Verbitsky A.P. Thermal Treatment in Milk Processing: Using a Complex Energy-Substitution Equipment during Preliminary Water Heating. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology. 2018; 48(3):124-132. (In Russ.) DOI: https://doi.org/10.21603/2074-9414-2018-3-124-132

9. Gerber Yu.B., Gavrilov A.V., Kiyan N.S. Energy Indicators of Thermo-Mixing System Operation in a Milk Processing Line with the Use of a Complex Energy-Substituting Installation. Vestnik Federalnogo gosudarstvennogo obrazovatelnogo uchrezhdeniya vysshego professionalnogo obrazovaniya “Moskovskiy gosudarstvennyy agroinzhenernyy universitet imeni V. P. Goryachkina” = Moscow Goryachkin Agroengineering University Bulletin. 2018; (6):65-69. Available at: https://clck.ru/MjFzi (accessed 30.03.2020). (In Russ.)

10. Gerber Yu.B, Gavrilov A.V. Machine Processing of Milk in Dairy Production. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology. 2019; 49(3):375-382. (In Russ.) DOI: https://doi.org/10.21603/2074-9414-2019-3-375-382

11. Kriger O.V., Noskova S.Yu. Properties of Lactic Acid Microorganisms: Long-Term Preservation Methods. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology. 2018; (4):30-38. (In Russ.) DOI: https://doi.org/10.21603/2074-9414-2018-4-30-38

12. Karpovich E.V. Prospective Uses of Solar Panels. Selskokhozyaystvennaya tekhnika: obsluzhivanie i remont = Agricultural Machinery: Maintenance and Repair. 2011; (4):34-36. Available at: http://www.cnshb.ru/cnshb/newpost/arttrn.asp?val=1182693 (accessed 30.03.2020). (In Russ.)

13. Bobyl A.V., Zabrodskii A.G., Malyshkin V.G., et al. Sources of Alternative Energy Development. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanized Crop and Livestock Production. 2017; (92):31-35. Available at: https://cyberleninka.ru/article/n/istochniki-razvitiya-alternativnoy-energetiki (accessed 30.03.2020). (In Russ.)

14. Brovtsin V.N., Erk A.F. Optimization of Parameters of a Solar Water Heating Installation through Computational Experiment. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanized Crop and Livestock Production. 2013; (84):112-125. Available at: https://docplayer.ru/42197151-V-nbrovcin-d-r-tehn-nauk-a-f-erk-kand-tehn-nauk.html (accessed 30.03.2020). (In Russ.)

15. Brovtsin V.N., Erk A.F. Substantiation of Optimal Parameters of Solar and Wind Energy Converters into Electricity. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanized Crop and Livestock Production. 2014; (85):72-84. Available at: https://cyberleninka.ru/article/n/obosnovanie-optimalnyh-parametrov-preobrazovateley-energii-solntsa-i-vetra-v-elektricheskuyu (accessed 30.03.2020). (In Russ.)

16. Sudachenko V.N., Erk A.F., Timofeev E.V. Justification Criterion of Economic Efficiency of Joint Use of Traditional and Renewable Energy Sources. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanized Crop and Livestock Production. 2017; (92):35-43. Available at: https://cyberleninka.ru/article/n/obosnovanie-kriteriya-ekonomicheskoy-effektivnosti-sovmestnogo-ispolzovaniya-traditsionnyh-i-vozobnovlyaemyh-energoistochnikov (accessed 30.03.2020). (In Russ.)

17. Marchenko O.V., Solomin S.V. Systemic Studies of Renewable Energy Efficiency. Teploenergetika = Heat Power Engineering. 2010; (11):12-17. (In Russ.)

18. Permyakov E.N. Unconventional Renewable Energy Sources: Status and Prospects for Development. Energeticheskoe stroitelstvo = Energy Construction. 2011; (12):15-21. (In Russ.)

19. Karaeva N.S., Kariev M.A. Development of Alternative Energy Sources in Solving Energy Problems. Vestnik Kyrgyzskogo natsionalnogo agrarnogo universiteta im. K. I. Skryabina = Bulletin of the Skryabin Kyrgyz National Agricultural University. 2014; (2):331-335. (In Russ.)

20. Aleeksenko S.V. Unconventional Energy and Energy Saving. Innovatsii. Tekhnologiya. Resheniya = Innovation. Technology. Solutions. 2006; (3):8-41. Available at: http://masters.donntu.org/2011/etf/korovin/library/article3/article3.htm (accessed 30.03.2020). (In Russ.)

21. Milovanov I.V. Analysis of the Current State of the Energy Sector Development Using Alternative Energy Sources. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta = Works of the Kuban State Agrarian University. 2013; (44):278-281. Available at: https://kgau-works.kubsau.ru/issue/2013-44 (accessed 30.03.2020). (In Russ.)

22. Svalova V.B. Alternative Energy: Challenges and Prospects. Monitoring. Nauka i tekhnologii = Monitoring. Science and Technology. 2015; (3):82-97. Available at: http://csmos.ru/index.php?page=mntissue-2015-3-09 (accessed 30.03.2020). (In Russ.)

23. Shevcova S.V., Zholud D.S. Analysis of Foreign Experience of the Use of Alternative Types of Energy. Energosberezhenie. Energetika. Energoaudit = Energy Saving. Power Engineering. Energy Audit. 2010; (6):49-53. Available at: https://clck.ru/MjNor (accessed 30.03.2020). (In Russ.)

24. Muchinskaya A.V., Sinkevich A.N. Solar Energy in the Energy Supply System for Agricultural Consumers. Selskokhozyaystvennye nauki i agropromyshlennyy kompleks na rubezhe vekov = Agricultural Sciences and Agro-Industrial Complex at the Turn of the Century. 2014; (8):158-161. Available at: https://studylib.ru/doc/2102839/solnechnaya-e-nergiya-v-sisteme-e-nergosnabzheniya (accessed 30.03.2020). (In Russ.)

25. Safonov V.A., Voskanyan A.A. Trends, Status, Opportunities, Perspectives of Development in Renewable Energy Sources (V) in the Republic of Crimea and Sevastopol. Energeticheskie ustanovki i tekhnologii = Power Plants and Technologies. 2017; 3(4):55-64. (In Russ.)

26. Sabanchin V.R., Zanina A.F. Sun as an Alternative to Traditional Fuel. Vestnik UGUES. Nauka. Obrazovanie. Ekonomika. Seriya: Ekonomika = Bulletin of USUES. Science. Education. Economy. Series: Economy. 2014; (1):201-204. Available at: http://www.ugues.ru/files/Вестник/Vipusk-7-2014.pdf (accessed 30.03.2020). (In Russ.)

27. Engovatova V.V., Demin V.I., Ovchinnikova E.I., et al. Future Directions in the Field of Energy and Power of Crimea. Nauchnye trudy KubGTU = Scientific Works of Kuban State Technical University. 2015; (4):301-312. Available at: https://ntk.kubstu.ru/data/mc/0011/0392.pdf (accessed 30.03.2020). (In Russ.)

28. Suhoruchkina T.Y., Atrasenko O.S. Problems of Development of Renewable Energy in Russia. Energo- i resursosberezhenie: Promyshlennost и transport = Energy and Resource Saving: Industry and Transport. 2016; (2):40-43. Available at: https://clck.ru/MjQ8w (accessed 30.03.2020). (In Russ.)

29. Tepe K., Agbenotowossi K., Djeteli G., et al. Determination of Basic Parameters of Solar Panels. International Scientific Journal for Alternative Energy and Ecology. 2010; (2):22-27. Available at: http://naukarus.com/determination-of-basic-parameters-of-solar-panels (accessed 30.03.2020). (In Eng.)

30. Gladyshev P.P., Filin S.V., Puzynin A.I., et al. Thin Film Solar Cells Based on CdTe and Cu(In,Ga) Se2 (CIGS) Compounds. In: Journal of Physics: Conference Series: 3rd Nanotechnology International Forum (1-3 November, 2010). Moscow; 2010. Vol. 291. (In Eng.)

31. Clapp J., Newell P., Brent Z.W. The Global Political Economy of Climate Change, Agriculture and Food Systems. The Journal of Peasant Studies. 2018; 45(1):80-88. (In Eng.) DOI: https://doi.org/10.1080/03066150.2017.1381602

32. Govindan K. Sustainable Consumption and Production in the Food Supply Chain: A Conceptual Framework. International Journal of Production Economics. 2018; 195:419-431. (In Eng.) DOI: https://doi.org/10.1016/j.ijpe.2017.03.003

33. Cai X., Wallington K., Shafiee-Jood M., et al. Understanding and Managing the Food-Energy-Water Nexus – Opportunities for Water Resources Research. Advances in Water Resources. 2018; 111:259-273. (In Eng.) DOI: https://doi.org/10.1016/j.advwatres.2017.11.014

34. Prosekov A.Y., Ivanova S.A. Food Security: The Challenge of the Present. Geoforum. 2018; 91:73-77. (In Eng.) DOI: https://doi.org/10.1016/j.geoforum.2018.02.030

35. Burdo O., Bandura V., Zykov A., et al. Development of Wave Technologies to Intensify Heat and Mass Transfer Processes. Eastern-European Journal of Enterprise Technologies. 2017; 4(11):34-42. (In Eng.) DOI: https://doi.org/10.15587/1729-4061.2017.108843

36. Burdo O.G., Bandura V.N., Levtrinskaya Y.O. Electrotechnologies of Targeted Energy Delivery in the Processing of Food Raw Materials. Surface Engineering and Applied Electrochemistry. 2018; 54(2):210-218. (In Eng.) DOI: https://doi.org/10.3103/S1068375518020047

37. Sabarez H.T., Keuhbauch S., Knoerzer K. Ultrasound Assisted Low Temperature Drying of Food Materials. In: 21st International Drying Symposium Proceedings; 2018. Рр. 1245-1250. (In Eng.) DOI: https://doi.org/10.4995/IDS2018.2018.7329

38. Kumar C., Karim M.A. Microwave-Convective Drying of Food Materials: A Critical Review. Critical Reviews in Food Science and Nutrition. 2019; 59(3):379-394. (In Eng.) DOI: https://doi.org/10.1080/10408398.2017.1373269 

 

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla