PDF To download article.

DOI: 10.15507/2658-4123.035.202501.049-059

 

Investigation of Reversible Heat Transfer in a One-Pipe Heating System

 

Alexey P. Levtsev
Dr.Sci. (Eng.), Professor, Head of the Department of Thermal Power Systems, National Research Mordovia State University (68 Bolshevistskaya St., Saransk 430005, Russian Federation), ORCID: https://orcid.org/0000-0003-2429-6777, Researcher ID: B-8620-2019, levtzevap@mail.ru

Evgeniy S. Lapin
Cand.Sci. (Eng.), Associate Professor of the Department of Thermal Power Systems, National Research Mordovia State University (68 Bolshevistskaya St., Saransk 430005, Russian Federation), ORCID: https://orcid.org/0001-9647-8663, evgeniy-lapin@yandex.ru

Ivan I. Lysyakov
Undergraduate Student of Thermal Power Systems of the Institute of Mechanics and Power Engineering, National Research Mordovia State University (68 Bolshevistskaya St., Saransk 430005, Russian Federation), lysyakov02@bk.ru

Daifen Chen
Ph.D., Professor, Dean of the School of Energy and Power, Jiangsu University of Science and Technology (2 Mengxi Rd, Zhenjiang 212003, China), ORCID: https://orcid.org/0009-0002-4110-2199, Scopus ID: 26536999100, dfchen@justc.edu.cn

 

Abstract
Introduction. With the standard mode, heat transfer in one-pipe heating systems is significantly inferior to heat transfer in two-pipe systems. The development of pulse technologies for heating systems made it possible to create a reversible heat transfer in which heat transfer in heating devices is improved through the heat transfer agent pulsation, but the heat transfer coefficient depends largely on technological solutions for creating this reversing mode. In this connection, developing original technological scheme for reversible heat transfer based on the diaphragm pump and substantiating optimal frequency range of its operation is relevant and practically important for improving one-pipe heating systems.
Aim of the Study. The study is aimed at increasing the efficiency of one-pipe heating systems through creating reversible heat transfer agent supply using a diaphragm pump.
Materials and Methods. There were used the methods of circuits, physical experiment and mathematical statistics to establish experimental dependences of the temperature difference for the heating and heated circuits of reversible heat transfer through one pipe on the frequency of pulsations of the heat transfer agent flow at different inlet temperatures in dynamics. The physical experiment was carried out at two heat transfer agent temperatures (50 and 60°C).
Results. With the use of the laboratory setup for reversible heat transfer through one pipe, there have been found the optimal frequency for two heat transfer agent temperatures, providing an increase in the temperature difference in the circuits and the heat transfer coefficient. There have been found dependences of temperature difference for heating (external) and heated (internal) circuits of heat transfer and heat transfer coefficient for the heat exchanger on the pump diaphragm stroking rate.
Discussion and Conclusion. As a result of the physical experiment, it has been found that the heat energy transfer through one pipe is possible in a wide frequency range (from 0.15 to 0.4 Hz), while the greatest heat transfer is recorded at a frequency of 0.3–0.4 Hz. The technology of heat transfer through one pipe can be successfully used for heating common areas in apartment buildings, dormitories, industrial and agricultural facilities, and individual residential buildings.

Keywords: heating system, pulsating mode, reverse motion, physical experiment, temperature difference, heat transfer coefficient

Conflict of interest: The authors declare no conflict of interest.

For citation: Levtsev A.P., Lapin E.S., Lysyakov I.I., Chen D. Investigation of Reversible Heat Transfer in a One-Pipe Heating System. Engineering Technologies and Systems. 2025;35(1):49–59. https://doi.org/10.15507/2658-4123.035.202501.049-059

Authors contribution:
A. P. Levtsev – formulating the study idea, aims and objectives; applying statistical, mathematical, computational, and other formal methods to analyze the study data; conducting the study including performing experiments and collecting data.
E. S. Lapin – conducting the study specifically performing the experiments and collecting data; preparing the manuscript, specifically visualizing the study results and data obtained.
I. I. Lysyakov – conducting the study, specifically performing the experiments collecting data.
D. Chen – formulating the study idea, aims and objectives; applying statistical, mathematical, computational, and other formal methods to analyze the study data.

All authors have read and approved the final manuscript.

Submitted 20.12.2024;
revised 10.01.2025;
accepted 15.01.2025

 

REFERENCES

1. Попова Н.М., Таран В.Е., Петрикеева Н.А., Чудинов Д.М. Оценка технического состояния те- пловых сетей в РФ. Градостроительство. Инфраструктура. Коммуникации. 2021;(1):16–21. EDN: AHRZOF Popova N.M., Taran V.E., Petrikeeva N.A., Chudinov D.M. [Assessment of the Technical Condition of Heating Networks in the Russian Federation]. Gradostroitel’stvo. Infrastruktura. Kommunikacii. 2021;(1):16–21. (In Russ., abstract in Eng.) EDN: AHRZOF

2. Новосельцев Б.П., Мерщиев А.А., Соловьев С.А. Выбор системы отопления для встроенных в жилые дома помещений общественного назначения. Жилищное хозяйство и коммунальная инфраструктура. 2019;9(2):50–55. EDN: KFUVPK Novoseltsev B.P., Mershchiyev A.A., Solovyov S.A. The Choice of Heating System for Built-In Residential Building Public Rooms. Housing and Utilities Infrastructure. 2019;9(2):50–55. (In Russ., abstract in Eng.) EDN: KFUVPK

3. Жерлыкина М.Н., Кононова М.С. Технико-экономическое сравнение различных материалов труб, применяемых при поквартирной разводке системы отопления. Жилищное хозяйство и коммунальная инфраструктура. 2018;4(1):96–103. EDN: YMNEOQ Zherlykina M.N., Kononova M.S. Techno-Economic Comparison of Various Materials of Pipes used in the Door-to-Door Layout of the Heating System. Housing and Utilities Infrastructure. 2018;4(1):96–103. (In Russ., abstract in Eng.) EDN: YMNEOQ

4. Рохлецова Т.Л., Никулин С.В., Кияница Л.А. К вопросу проектирования однотрубных сис- тем отопления в жилых зданиях. Известия высших учебных заведений. Строительство. 2016;691(7):36–45. EDN: WYCZHT Rokhletsova T.L., Nikulin S.V., Kiyanitsa L.A. Designing Single-Pipe Heating System in Residential Units. News of Higher Educational Institutions. Construction. 2016;691(7):36–45. (In Russ., abstract in Eng.) EDN: WYCZHT

5. Копец К.К. Технико-экономическое сравнение однотрубных и двухтрубных систем ото- пления. Вестник Луганского государственного университета имени Владимира Даля. 2021;54(12):75–78. EDN: EKXDOM Kopets K.K. Technical and Economic Comparison of Single-Pipe and Two-Pipe Heating Systems. Vestnik Vladimir Dahl National University. 2021;54(12):75–78. (In Russ., abstract in Eng.) EDN: EKXDOM

6. Новосельцев Б.П., Лобанов Д.В. Нюансы проведения капремонта системы водяного ото- пления в жилых зданиях старой застройки. Сантехника. Отопление. Кондиционирование. 2021;(3):48–50. URL: https://clck.ru/3GfRma (дата обращения: 26.08.2024). Novoseltsev B.P., Lobanov D.V. [Nuances of the Overhaul of the Water Heating System in Residential Buildings of Old Buildings]. Santekhnika. Otoplenie. Kondicionirovanie. 2021;(3):48–50. (In Russ., abstract in Eng.) Available at: https://clck.ru/3GfRma (accessed 26.08.2024).

7. Makeev A. Implementation of Pulse Heat Supply for Dependent Connection of Customers. Magazine of Civil Engineering. 2018;83(7):114–125. https://doi.org/10.18720/MCE.83.11

8. Макеев А.Н. К вопросу локальной организации импульсно-колеблющейся циркуляции тепло- носителя в системе теплоснабжения. Бюллетень науки и практики. 2018;4(5):254–262. https:// doi.org/10.5281/zenodo.1246193 Makeev A.N. To the Question of the Local Organization of the Pulse-Vibration Circulation of the Heat-Supplyer in the Heat Supply System. Bulletin of Science and Practice. 2018;4(5):254–262. (In Russ., abstract in Eng.) https://doi.org/10.5281/zenodo.1246193

9. Макеев А.Н. Теория организации импульсной циркуляции теплоносителя в системе тепло- снабжения с независимым присоединением абонентов. Научный журнал строительства и архитектуры. 2018;50(2):11–20. EDN: XQGYFN Makeev A.N. Theory of Pulse Circulation of the Heater in the Heat Supply System with Independent Subscription of Subscribers. Scientific Journal of Construction and Architecture. 2018;50(2):11–20. (In Russ., abstract in Eng.) EDN: XQGYFN

10. Левцев А.П., Лысяков И.И. Система теплоснабжения с трансформацией напора тепловой сети. Патент 2825931 Российская Федерация. 2 сентября 2024. EDN: DTNWSU Levtsev A.P., Lysyakov I.I. Heat Supply System with Transformation of Heat Network Head. Patent 2825931 Russian Federation. 2024 September 2. (In Russ., abstract in Eng.) EDN: DTNWSU

11. Embaye M., Al-Dadah R.K., Mahmoud S. Effect of Flow Pulsation on Energy Consumption of a Radiator in a Centrally Heated Building. International Journal of Low-Carbon Technologies. 2016;11(1):119–129. https://doi.org/10.1093/ijlct/ctu024

12. Embaye M., Al-Dadah R.K., Mahmoud S. Thermal Performance of Hydronic Radiator with Flow Pulsation – Numerical Investigation. Applied Thermal Engineering. 2015;80:109–117. https:// doi.org/10.1016/j.applthermaleng.2014.12.056

13. Levsev A.P., Lapin E.S., Zhang Q. Increasing the Heat Transfer Efficiency of Sectional Radiators in Building Heating Systems. Magazine of Civil Engineering. 2019;92(8):63–75. https:// doi.org/10.18720/MCE.92.5

14. Левцев А.П., Лапин Е.С., Чжень Д. Использование тарельчатых диафрагм транспорт- ных средств в двухконтурных мембранных насосах. Инженерные технологии и системы. 2023;33(1):68–78. https://doi.org/10.15507/2658-4123.033.202301.068-078 Levtsev A.P., Lapin E.S., Chen D. The Use of Disk-Shaped Diaphragm of Vehicles in Double-Circuit Diaphragm Pumps. Engineering Technologies and Systems. 2023;33(1):68‒78. (In Russ., abstract in Eng.) https://doi.org/10.15507/2658-4123.033.202301.068-078

15. Levtsev A.P., Lapin E.S., Grishin B.M., Ezhov E.G., Rodionov Yu.V. Research of Equipment for Pulsed Heating Supply. IOP Conference Series: Materials Science and Engineering. 2020;828:012015. https://doi.org/10.1088/1757-899X/828/1/012015

16. Кочев А.Г., Саргсян С.В., Агафонова В.В. Влияние теплоотдачи отопительного прибора в одно- трубной системе водяного отопления на коэффициент затекания. Промышленная энергетика. 2024;(6):39–43. EDN: MTBDXJ Kochev A.G., Sargsyan S.V., Agafonova V.V. [The Effect of Heat Transfer of a Heating Device in a Single-Tube Water Heating System on the Leakage Coefficient]. Industrial Energy. 2024;(6):39– 43. (In Russ.) EDN: MTBDXJ

17. Олейников Ю.Д. Отопление: две трубы или одна? Сантехника. Отопление. Кондиционирова- ние. 2011;113(5):36–37. EDN: RHVZEF Oleynikov Y.D. [Heating: Two Pipes or One?] Plumbing. Heating. Air Conditioning. 2011;113(5):36–37. (In Russ.) EDN: RHVZEF

 

Licensed under a Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla