DOI: 10.15507/2658-4123.033.202303.417-434
Investigating the Influence of the Belt IR Dryer Regime Parameters on Kinetics of Carrot Drying Process
Alexander V. Gavrilov
Cand.Sci. (Engr.), Associate Professor, Associate Professor of Chair of Technology and Equipment of Production and Processing of Products of Stock-Raising, Academy Agrotechnological of the V. I. Vernadsky Crimean Federal University (Agrarnoye, Simferopol 295492, Russian Federation),ОRCID: https://orcid.org/0000-0003-3382-0307, Researcher ID: AAH-5137-2019, This email address is being protected from spambots. You need JavaScript enabled to view it.
Yuriy B. Gerber
Dr.Sci. (Engr.), Professor, Deputy Director of Education, Professor of Chair of Technology and Equipment for the Production and Processing of Livestock Products, Academy Agrotechnological of the V. I. Vernadsky Crimean Federal University (Agrarnoye, Simferopol 295492, Russian Federation), ОRCID: https://orcid.org/0000-0003-3224-6833, Researcher ID: B-6690-2019, This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
Introduction. In the process of convective drying, there is a contradiction between drying speed and energy efficiency. One of the solutions to this contradiction is the use of targeted energy supply to the product. The method of targeted energy supply is the use of electromagnetic radiation in the drying process.
Aim of the Article. The study was aimed at obtaining the coefficients of a logarithmic model for calculating the performance of a belt IR dryer for drying carrots.
Materials and Methods. There were studied a modular belt IR dryer with the ability to control the speed of the belt and the power of the emitters. To describe the process, there were used standard models of the dependence of relative water content on drying time.
Results. An analysis of the drying rate curves showed an extreme effect of the belt speed on the drying rate. At belt speeds above 10 mm/s, an increase in belt speed leads to an increase in the duration of the drying process. To describe the kinetics of the drying process at IR powers of 170, 300, and 450 W, there was used a logarithmic model, as it most adequately describes the experimental data.
Discussion and Conclusion. For this type of dryers it is recommended to use the belt speed of about 10 mm/sec. The obtained coefficients of the logarithmic model are used to calculate the capacity of the drying unit.
Keywords: infrared drying, diffusion coefficient, water content, belt dryer, belt speed, the kinetics of the drying process
Conflict of interest: The authors declare no conflict of interest.
For citation: Gavrilov A.V., Gerber Yu.B. Investigating the Influence of the Belt IR Dryer Regime Parameters on Kinetics of Carrot Drying Process. Engineering Technologies and Systems. 2023;33(3):417‒434. https://doi.org/10.15507/2658-4123.033.202303.417-434
Authors contribution:
A. V. Gavrilov – general idea, formulation of the purpose and objectives of the experiment, conducting the research.
Yu. B. Gerber – technical support for experiments.
All authors have read and approved the final manuscript.
Submitted 18.04.2023; revised 30.05.2023;
accepted 30.06.2023.
REFERENCES
1. Burdo O.G., Trishyn F.A., Sirotyuk I.V., Kruss S. Electrodynamic Processes as an Effective Solution of Food Industry Problems. Surface Engineering and Applied Electrochemistry. 2021;57(3):330‒344. https://doi.org/10.3103/S1068375521030030
2. Thamkaew G., Sjöholm I., Galindo F.G. A Review of Drying Methods for Improving the Quality of Dried Herbs. Critical Reviews in Food Science and Nutrition. 2021;61(11):1763–1786. https://doi.org/10.1080/10408398.2020.1765309
3. Boateng I.D., Yang X.M., Li Y.Y. Optimization of Infrared-Drying Parameters for Ginkgo Biloba L. Seed and Evaluation of Product Quality and Bioactivity. Industrial Crops and Products. 2021;160:113108. https://doi.org/10.1016/j.indcrop.2020.113108
4. Sakare P., Prasad N., Thombare N., Singh R. Infrared Drying of Food Materials: Recent Advances. Food Engineering Reviews. 2020;12(3):381–398. https://doi.org/10.1007/S12393-020-09237-W
5. Mohammadi Z., Kashaninejad M., Ziaiifar A.M., Ghorbani M. Peeling of Kiwifruit Using Infrared Heating Technology: A Feasibility and Optimization Study. LWT. 2019;99:128–137. https://doi.org/10.1016/j.lwt.2018.09.037
6. Omarov M.M., Islamov M.N., Abdu Z.A. [Drying Carrots Using Infrared Emitters SF-4]. Pishchevaya promyshlennost. 2009;(8):18‒19. Available at: https://cyberleninka.ru/article/n/sushka-morkovi-s-ispolzovaniem-infrakrasnyh-izluchateley-sf-4 (accessed 30.03.2023). (In Russ.)
7. Aniesrani Delfiya D.S., Prashob K., Murali S., Alifiya P.V., Samuel M.P., Pandiselvam R. Drying Kinetics of Food Materials in Infrared Radiation Drying: A Review. Journal of Food Process Engineering. 2022;45(6):e13810. https://doi.org/10.1111/JFPE.13810
8. Zheltoukhova E.Yu., Kadantsev A.A., Yanitsky V.I. [Study of Radiative-Convective Drying of Potatoes with Variable Heat Supply]. Vestnik VGUIT. 2017;79(1):46–49. Available at: https://cyberleninka.ru/article/n/issledovanie-radiatsionno-konvektivnoy-sushki-kartofelya-pri-peremennom-teplopodvode/viewer (accessed 16.04.2023). (In Russ.)
9. Onwude D.I., Hashim N., Abdan K., Janius R. The Effectiveness of Combined Infrared and Hot-Air Drying Strategies for Sweet Potato. Journal of Food Engineering. 2019;241:75–87. https://doi.org/10.1016/j.jfoodeng.2018.08.008
10. Onwude D.I., Hashim N., Abdan K., Janius R., Ghen G. Modelling the Mid-Infrared Drying of Sweet Potato: Kinetics, Mass and Heat Transfer Parameters, and Energy Consumption. Heat and Mass Transfer/Waerme- und Stoffuebertragung. 2018;54:2917–2933. https://doi.org/10.1007/S00231-018-2338-Y
11. Afzal T.M., Abe T. Diffusion in Potato during Far Infrared Radiation Drying. Journal of Food Engineering. 1998;37(4):353–365. Available at: https://www.sciencedirect.com/science/article/pii/S0260877498001113?via%3Dihub (accessed 16.04.2023).
12. Afzal T.M., Abe T. Some Fundamental Attributes of Far Infrared Radiation Drying of Potato. Drying Technology. 1999;17(1/2):138–155. https://doi.org/10.1080/07373939908917522
13. Afzal T.M., Abe T., Hikida Y. Energy and Quality Aspects during Combined FIR–Convection Drying of Barley. Journal of Food Engineering. 1999;42(4):177–182. https://doi.org/10.1016/S0260-8774(99)00117-X
14. Rekik C., Besombes C., Hajji W., Gliguem H., Bellagha S., Mujumdar A.S., et al. Study of Interval Infrared Airflow Drying: A Case Study of Butternut (Cucurbita Moschata). LWT. 2021;147:111486. https://doi.org/10.1016/J.LWT.2021.111486
15. Melyakova O.A. Energy Efficient Modes of Drying Vegetables. Izvestia Orenburg State Agrarian University. 2020;(4):169‒172. Available at: https://globalf5.com/Zhurnaly/Ekonomika-i-menedzhment/Izvestiya-Orenburgskogo-GAU/vypusk-2020-4?article=282539 (accessed 16.04.2023). (In Russ.)
16. Grigoriev I.V., Rudobashta S.P. Pulse Infrared Drying of Seeds of Vegetable Crops. Vestnik FGOU VPO MGAU “Agroinzheneriya”. 2009;(4):7‒10. Available at: https://cyberleninka.ru/article/n/impulsnaya-infrakrasnaya-sushka-semyan-ovoschnyh-kultur (accessed 24.08.2023). (In Russ.)
17. Altukhov I.V. The Use of Discrete IR Energy Supply in the Technology of Drying Sugar-Containing Root Crops. Vestnik IrGSKhA. 2013;(55):100‒105. Available at: http://vestnik.irsau.ru/files/v55.pdf (accessed 24.08.2023). (In Russ.)
18. Altukhov I.V., Zuglenok N.V. Features of the Operation of Pulsed IR Emitters in the Technology of Drying Root Crops. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta. 2015;(4):109–114. Available at: https://cyberleninka.ru/article/n/osobennosti-raboty-impulsnyh-ik-izluchateley-v-tehnologii-sushki-korneklubneplodov/viewer (accessed 16.04.2023). (In Russ.)
19. Altukhov I.V., Tsuglenok N.V., Ochirov V.D. Influence of Pulsed Infrared Drying on the Safety of Active Substances. Vestnik APK Stavropolia. 2015;(1):7–10. Available at:https://cyberleninka.ru/article/n/vliyanie-impulsnoy-infrakrasnoy-sushki-na-sohrannost-aktivnodeystvuyuschih-veschestv/viewer (accessed 16.04.2023). (In Russ.)
20. Altukhov I.V. Substantiation of Modes of Drying Sugar-Containing Root Crops by IR Radiation. Vestnik IrGShA. 2013;(56):87‒97. Available at: http://vestnik.irsau.ru/files/v56.pdf (accessed 16.04.2023). (In Russ.)
21. Ostrikov A.N., Zheltoukhova E.Yu. Radiation-convective drying of Pear Chips with Pulsed Energy Supply. Izvestiya Vuzov. Pishchevaya Tekhnologiya. 2012;(1):83‒86. Available at: https://cyberleninka.ru/article/n/radiatsionno-konvektivnaya-sushka-grushevyh-chipsov-pri-impulsnom-energopodvode/viewer (accessed 16.04.2023). (In Russ.)
22. Ostrikov A.N., Zheltoukhova E.Yu. Study of the Kinetics of Radiation-Convective Drying of Peaches with Pulsed Energy Supply. Tekhnologii pishchevoy i pererabatyvayushchey promyshlennosti APK ‒ produkty zdorovogo pitaniya. 2014;(1):114–118. Available at: https://cyberleninka.ru/article/n/izuchenie-kinetiki-radiatsionno-konvektivnoy-sushki-persikov-pri-impulsnom-energopodvode/viewer (accessed 16.04.2023). (In Russ.)
23. Gu C., Ma H., Tuly J. A., Guo L., Zhang X., Liu D. Effects of Catalytic Infrared Drying in Combination with Hot Air Drying and Freeze Drying on the Drying Characteristics and Product Quality of Chives. LWT. 2022;161:113363. https://doi.org/10.1016/j.lwt.2022.113363
24. Chen C., Wongso I., Putnam D., Khir R. Effect of Hot Air and Infrared Drying on the Retention of Cannabidiol and Terpenes in Industrial Hemp (Cannabis sativa L.). Industrial Crops and Products. 2021;172:114051. https://doi.org/10.1016/j.indcrop.2021.114051
25. El-Mesery H.S., Kamel R.M., Emara R.Z. Influence of Infrared Intensity and Air Temperature on Energy Consumption and Physical Quality of Dried Apple Using Hybrid Dryer. Case Studies in Thermal Engineering. 2021;27:101365. https://doi.org/10.1016/j.csite.2021.101365
26. Moradi M., Azizi S., Niakousari M., Kamgar S. Drying of Green Bell Pepper Slices Using an Ir-Assisted Spouted Bed Dryer: An Assessment of Drying Kinetics and Energy Consumption. Innovative Food Science & Emerging Technologies. 2020;60:102280. https://doi.org/10.1016/J.IFSET.2019.102280
27. Burdo O., Bezbah I., Kepin N., Zikov A., Yarovyi I., Gavrilov A., et al. Drying of Green Bell Pepper Slices Using an Ir-Assisted Spouted Bed Dryer: An Assessment of Drying Kinetics and Energy Consumption. Eastern-European Journal of Enterprise Technologies. 2019;5(11):24–32. https://doi.org/10.15587/1729-4061.2019.178937
28. Zhihua G., Torki M., Kaveh M., Beigi M., Yang X. Characteristics and Multi-Objective Optimization of Carrot Dehydration in a Hybrid Infrared/Hot Air Dryer. LWT. 2022;172:114229. https://doi.org/10.1016/j.lwt.2022.114229
29. De Souza A.U., Gomes Corrêa J.L., Tanikawa D.H., Abrahao F.R., Jesus Jungueira J.R., Jiménez E.C. Hybrid Microwave-Hot Air Drying of the Osmotically Treated Carrots. LWT. 2022;156:113046. https://doi.org/10.1016/j.lwt.2021.113046
30. Du Y., Yan J., Wei H., Xie H., Wu Y., Zhou J. Drying Kinetics of Paddy Drying with Graphene Far-Infrared Drying Equipment at Different IR Temperatures, Radiations-Distances, Grain-Flow, and Dehumidifying-Velocities. Case Studies in Thermal Engineering. 2023;43:102780. https://doi.org/10.1016/J.CSITE.2023.102780
31. Arslan A., Soysal Y., Keskin M. Mathematical Modeling, Moisture Diffusion and Color Quality in Intermittent Microwave Drying of Organic and Conventional Sweet Red Peppers. AgriEngineering. 2020;2(3):393–407. https://doi.org/10.3390/AGRIENGINEERING2030027
32. Selvi K.Ç. Investigating the Influence of Infrared Drying Method on Linden (Tilia Platyphyllos Scop.) Leaves: Kinetics, Color, Projected Area, Modeling, Total Phenolic, and Flavonoid Content. Plants. 2020;9(7):916. https://doi.org/10.3390/PLANTS9070916
33. Mitrevski V., Dedinac A., Mitrevska C., Bundalevski S., Germitcioski T., Mijakovski V. Mathematical Modelling of Far-Infrared Vacuum Drying of Apple Slices. Thermal Science. 2019;23:393–400. https://doi.org/10.2298/TSCI180205143M
34. Doymaz I., Kipcak A.S., Piskin S. Microwave Drying of Green Bean Slices: Drying Kinetics and Physical Quality. Czech J. Food Sci. 2015;33(4):367‒376. https://doi.org/10.17221/566/2014-CJFS
35. Minaei S., Motevali A., Ahmadi E., Aziz M.H. Mathematical Models of Drying Pomegranate Arils in Vacuum and Microwave Dryers. Journal of Agricultural Science and Technology. 2012;14:311‒325.
36. Gavrilov A.V. Analysis of Modern Energy Technologies for the Processing of Vegetable Raw Materials. Agricultural Engineering. 2019;(5):31‒39. (In Russ., abstract in Eng.) https://doi.org/10.34677/1728-7936-2019-5-31-39
37. Burdo O., Terziev S., Gavrilov A., Sirotyuk I., Scherbich M. [System of Innovative Energy Technologies for Dehydration of Food Raw Materials]. Problemele Energeticii Regionale. 2020;2:92‒107. (In Russ., abstract in Eng.) https://doi.org/zenodo.3898317
38. Burdo O.G., Trishyn F.A., Terziev S.G., Gavrilov A.B., Sirotyuk I.V. Electrodynamic Processes as an Effective Solution of Food Industry Problems. Surface Engineering and Applied Electrochemistry. 2021;57(3):330–344. https://doi.org/10.3103/S1068375521030030
39. Salehi F., Satorabi M. Influence of Infrared Drying on Drying Kinetics of Apple Slices Coated with Basil Seed and Xanthan Gums. International Journal of Fruit Science. 2021;21(1):519–527. https://doi.org/10.1080/15538362.2021.1908202
40. Kaveh M., Chayjan R.A., Golpour I., Poncet S., Seirafi F., Khezri B. Evaluation of Exergy Performance and Onion Drying Properties in a Multi-Stage Semi-Industrial Continuous Dryer: Artificial Neural Networks (Anns) and Anfis Models. Food and Bioproducts Processing. 2021;127:58–76. https://doi.org/10.1016/J.FBP.2021.02.010
41. Batista A.S., Souza M.F.F., Prado M.M. Moisture Diffusion in Passion Fruit Seeds under Infrared Drying. Diffusion Foundations and Materials Applications. 2022;30:25–32. https://doi.org/10.4028/P-W52H5B
This work is licensed under a Creative Commons Attribution 4.0 License.