PDF To download article.

DOI: 10.15507/2658-4123.032.202204.504-519

 

Instrumental and Methodological Support for the Diagnostics of Nutritional Requirements of Plants

 

Ivan I. Gureev
Laboratory Manager, Federal Agricultural Kursk Research Center (70b Karl Marks St., 305021 Kursk, Russian Federation), Dr.Sci. (Engr.), Professor, Honored Inventor of the Russian Federation, ORCID: https://orcid.org/0000-0001-5995-3322, This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract 
Introduction. Mineral fertilizers essential for intensive crop production technologies are an expensive and environmentally unsafe resource polluting the soil and agricultural products when applied in excess. The purpose of the research is instrumental and methodological support for modern functional diagnostics of nutritional requirements of plants, which is aimed at activating the photosynthesis process.
Materials and Methods. It is proposed, for identifying nutritional requirements of plants to replace numerous intermediate plastic test tubes with a mixture of permanent components (sodium chloride, chloroplast suspension and Tillmans’ paint) for the diagnostic solution variants by a separate elastic light-protective container. A homogeneous mixture in a separate container eliminates the error in the concentration of solution components, which accompanies the repeated formation of mixtures in intermediate test tubes. This made it possible to reduce a number of repeated operations of filling intermediate test tubes with pipette dispensers for each tested mixture of elements. The studies were carried out in 2021–2022 using mechanical pipette dispensers Lenpipet Thermo Fisher Scientific (Finland) – 10 ml, Lenpipet Color – 100 μl and Lenpipet Color – 200 μl. Their error was determined on a VK-600 electronic balance.
Results. The use of innovation increased the reliability of diagnostic data due to a 8.6% average reduction of error in the concentration of components in the mixture solution. In addition, the time spent on performing diagnostics decreased by 1.7 times that, under the conditions of a limited lifetime of chloroplasts, had a favorable effect on obtaining reliable data.
Discussion and Conclusion. Reliable diagnostic data on nutritional requirements of plants will save fertilizer resources and improve the quality of agricultural production free from excessive nutrients.

Keywords: functional diagnostics, reliability, batteries, chloroplasts, photochemical activity, optimization program

Funding: The study was conducted at the Federal Agricultural Kursk Research Center under State Assignment No. FGZU-2022-0005.

Acknowledgements: The author expresses his gratitude to the anonymous reviewers whose objective comments contributed to the quality of the article.

Conflict of interest: The author declares no conflict of interest.

For citation: Gureev I.I. Instrumental and Methodological Support for the Diagnostics of Nutritional Requirements of Plants. Engineering Technologies and Systems. 2022;32(4):504‒519. doi: https://doi.org/10.15507/2658-4123.032.202204.504-519

The author has read and approved the final manuscript.

Submitted 27.07.2022; approved after reviewing 10.10.2022;
accepted for publication 17.10.2022

 

REFERENCES

1. Bindraban P.S., Dimkpa C., Nagarajan L., et al. Revisiting Fertilizers and Fertilization Strategies for Improved Nutrient Uptake by Plants. Biology and Fertility of Soils. 2015;51(8):897–911. doi: https://doi.org/10.1007/s00374-015-1039-7

2. Krasilnikov P., Taboada M.A., Amanullah. Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture. 2022;12(4). doi: https://doi.org/10.3390/agriculture12040462

3. Gonova O.V., Malygin A.A. Economic and Mathematical Methods and Their Practical Application in Agrochemical Experiment. Journal of Agriculture and Environment. 2021;1(17). doi: https://doi.org/10.23649/jae.2021.1.17.6

4. Monreal C.M., DeRosa M., Mallubhotla S.C., et al. Nanotechnologies for Increasing the Crop Use Efficiency of Fertilizer-Micronutrients. Biology and Fertility of Soils. 2016;52(3):423–437. doi: https://doi.org/10.1007/s00374-015-1073-5

5. Lukin S.V., Zhuikov D.V. Content and Balance of Trace Elements (CO, MN, ZN) in Agroecosystems of the Central Chernozemic Region Russia. Agriculture. 2022;12(2). doi: https://doi.org/10.3390/agriculture12020154

6. Bindraban P.S., der Velde M., Ye L., et al. Assessing the Impact of Soil Degradation on Food Production. Current Opinion in Environmental Sustainability. 2012;4(5):478–488. doi: https://doi.org/10.1016/j.cosust.2012.09.015

7. Ding W., Xu X., He P., et al. Improving Yield and Nitrogen Use Efficiency through Alternative Fertilization Options for Rice in China: A Meta-Analysis. Field Crops Research. 2018;227:11–18. doi: https://doi.org/10.1016/j.fcr.2018.08.001

8. Batsmanova L., Taran N., Konotop Ye., et al. Use of a Colloidal Solution of Metal and Metal Oxide-Containing Nanoparticles as Fertilizer Soybean Productivity. Journal of Central European Agriculture. 2020;21(2):311–319. doi: https://doi.org/10.5513/JCEA01/21.2.2414

9. Hernández-Díaz J.A., Garza-García J.J., Zamudio-Ojeda A., et al. Plant-Mediated Synthesis of Nanoparticles and Their Antimicrobial Activity against Phytopathogens. Journal of the Science of Food and Agriculture. 2021;101(4):1270–1287. doi: https://doi.org/10.1002/jsfa.10767

10. Ingle A.P., Gupta I. Role of Metal-Based Nanoparticles in Plant Protection. In: A.P. Ingle (ed.). Nanotechnology in Plant Growth Promotion and Protection: Recent Advances and Impacts. John Wiley & Sons Ltd.; 2021. p. 220–238. doi: https://doi.org/10.1002/9781119745884.ch11

11. Withers P.J.A., Sylvester-Bradley R., Jones D.L., et al. Feed the Crop Not the Soil: Rethinking Phosphorus Management in the Food Chain. Environmental Science & Technology. 2014;28(12):6523–6530. doi: https://doi.org/10.1021/es501670j

12. Cakmak I., Prom-u-thai C., Guilherme L.R.G., et al. Iodine Bio Fortification of Wheat, Rice and Maize through Fertilizer Strategy. Plant and Soil. 2017;418(1–2):319–335. doi: https://doi.org/10.1007/s11104-017-3295-9

13. Xu M., Liu M., Si L., et al. Spraying High Concentrations of Chelated Zinc Enhances Zinc Biofortification in Wheat Grain. Journal of the Science of Food and Agriculture. 2021;102(9):3590–3598. doi: https://doi.org/10.1002/jsfa.11705

14. Belyaev N.N., Dubinkina Ye.A. Productivity of Varieties of Winter Wheat Depending on Application of Microfertilizer Akvadon-Mikro. Zemledelie. 2013;(6):45–47. Available at: https://elibrary.ru/item.asp?id=20446189 (accessed 20.07.2022). (In Russ., abstract in Eng.)

15. Tsygankov V.I. [Effect of Aquarine 5 Fertilizer on Yield and Quality of Winter Wheat]. Zemledelie. 2007;(6):21. Available at: http://jurzemledelie.ru/arkhiv-nomerov/6-2007 (accessed 20.07.2022). (In Russ.)

16. Lazarev V.I., Zolotareva I.A., Shershneva O.M. Methods of Application of Microbiological Guapsin and Trikhofit Preparations on Winter Wheat. Zemledelie. 2014;(2):23–24. Available at: https://clck.ru/32VFav (accessed 20.07.2022). (In Russ., abstract in Eng.)

17. Sharifi A. Remotely Sensed Vegetation Indices for Crop Nutrition Mapping. Journal of the Science of Food and Agriculture. 2020;100(14):5191–5196. doi: https://doi.org/10.1002/jsfa.10568

18. Li D., Li C., Yao Y., et al. Modern Imaging Techniques in Plant Nutrition Analysis: a Review. Computers and Electronics in Agriculture. 2020;174. doi: https://doi.org/10.1016/j.compag.2020.105459

19. Mu Q., Mengqi D., Xu J., et al. Photosynthesis of Winter Effectively Reflected Multiple Physiological Responses under Short-Term Drought-Rewatering Conditions. Journal of the Science of Food and Agriculture. 2021;102(6):2472–2483. doi: https://doi.org/10.1002/jsfa.11587

20. Du Q., Zhao X., Xia L., et al. Effects of Potassium Deficiency on Photosynthesis, Chloroplast Ultrastructure, ROS, and Antioxidant Activities in Maize (Zea Mays L.). Journal of Integrative Agriculture. 2019;18(2):395–406. doi: https://doi.org/10.1016/S2095-3119(18)61953-7

21. Fedotov G.N., Shalaev V.S., Batyrev Y.P. Soil Microorganisms and Stimulants of Seed Germination. Siberian Journal of Life Sciences and Agriculture. 2019;11(1):47–64. (In Russ., abstract in Eng.) doi: https://doi.org/10.12731/2658-6649-2019-11-1-47-64

22. Allam M., Radicetti E., Petroselli V., Mancinelli R. Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems. Agriculture. 2021;11(9). doi: https://doi.org/10.3390/agriculture11090823

23. Pleshkov A.S., Yagodin B.A. [The Way of Providing Plants with Mineral Elements]. Patent 952,168 USSR. 1982 August 23. 4 p. (In Russ.)

24. Abduazimov A.M., Vafoeva M.B. Influence of North Root Feeding on the Content of Chlorophyll in the Composition of Winter Wheat Leaves. Life Sciences and Agriculture. 2020;2(2):82–85. Available at: https://www.elibrary.ru/item.asp?id=43790945 (accessed 20.07.2022). (In Russ., abstract in Eng.)

25. Pahmeyer C., Kuhn T., Britz W. ‘Fruchtfolge’: a Crop Rotation Decision Support System for Optimizing Cropping Choices with Big Data and Spatially Explicit Modeling. Computers and Electronics in Agriculture. 2021;181. doi: https://doi.org/10.1016/j.compag.2020.105948

26. Gureev I.I. [A Way to Diagnose the Plants’ Need for Mineral Nutrients]. Patent 2,541,310 Russian Federation. 2015 February 10. (In Russ.)

27. Gureev I.I., Zherdev M.N., Brezhnev A.L. Barley Cultivation Technologies by Application of Micronutrient Fertilizers and Phytihormones. Zemledelie. 2015;(3):34–36. Available at: https://clck.ru/32VHA3 (accessed 20.07.2022). (In Russ., abstract in Eng.)

28. Gureev I.I., Zherdev M.N., Brezhnev A.L. Improvement of Agrotechologies of Winter Wheat Cultivation with the Use of Fertilizers, Containing Minor-Nutrient Elements. Zemledelie. 2016;(8):25–28. Available at: https://clck.ru/32VHCP (accessed 20.07.2022). (In Russ., abstract in Eng.)

29. Gureev I.I. [Program for Optimizing Plant Nutrition Based on Functional Leaf Diagnostics Data]. Registration Certificate No. 2021617738. 2021 May 19. (In Russ.)

30. Gureev I.I. [A Method of Leaf Diagnostics of Plant Needs for Mineral Nutrients]. Patent 2,780,843 Russian Federation. 2022 October 4. (In Russ.)

 

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla