PDF To download article.

DOI: 10.15507/2658-4123.031.202103.380-402

 

Results of Laboratory Studies of Soil Sifting in a Rod Elevator with Asymmetric Arrangement of Web Agitators and Adjustable Elevator Apron Angle

 

Aleksey S. Dorokhov
Deputy Director on Scientific and Organizational Work, Federal Scientific Agroengineering Center VIM (5, 1st Institutskiy Proyezd, Moscow 109428, Russian Federstion), Corresponding Member of RAS, D.Sc. (Engr.), Professor, Researcher ID: H-4089-2018, ORCID: https://orcid.org/0000-0002-4758-3843, This email address is being protected from spambots. You need JavaScript enabled to view it.

Alexey V. Sibirev
Senior Researcher of the Department of Technology and Machines in Vegetable Production, Federal Scientific Agroengineering Center VIM (5, 1st Institutskiy Proyezd, Moscow 109428, Russian Federation), Cand.Sc. (Engr.), Researcher ID: M-6230-2016, ORCID: https://orcid.org/0000-0002-9442-2276, This email address is being protected from spambots. You need JavaScript enabled to view it.

Aleksandr G. Aksenov
Leading Researcher of the Department of Technology and Machines in Vegetable Production, Federal Scientific Agroengineering Center VIM (5, 1st Institutskiy Proyezd, Moscow 109428, Russian Federation), Cand.Sc. (Engr.), Researcher ID: V-5572-2017, ORCID: https://orcid.org/0000-0002-9546-7695, This email address is being protected from spambots. You need JavaScript enabled to view it.

Maxim A. Mosyakov
Senior Researcher of the Department of Technology and Machines in Vegetable Production, Federal Scientific Agroengineering Center VIM (5, 1st Institutskiy Proyezd, Moscow 109428, Russian Federation), Cand.Sc. (Engr.), Researcher ID: A-8482-2019, ORCID: https://orcid.org/0000-0002-5151-7312, This email address is being protected from spambots. You need JavaScript enabled to view it.

Introduction. An increase in crop production from the growing area of both vegetable root crops and all agricultural products results in grows of the load on the machine-technology complex when harvesting. The reason is that in the structure of machine-technological complexes there are not devices providing the qualitative screening of the heap incoming for processing. The purpose of the study is to identify the areas with the minimum value of soil screening on the rod elevator surface depending on the elevator apron angle and to develop recommendations and proposals for improving the separation quality.
Materials and Methods. The article describes the methodology and results of laboratory studies of rod elevators with an asymmetric arrangement of web agitators and an adjustable elevator apron angle to determine the soil screening quality on its surface. We used the method of comprehensive assessment of the quality and stability of technological operations based on quantitative optimization criteria.
Results. The highest value of the screened soil weight is at the wavelength attenuation section of the rod elevator working branch 1,020 mm cause by action of the elliptical web agitator at an elevation angle of 5 gon.
Discussion and Conclusion. The rod elevator with asymmetric arrangement of web agitators and adjustable elevator apron angle increases the soil screening quality along the entire length of the elevator apron by 10 %, and therefore increases the completeness of separation of root crops from soil impurities.

Keywords: rod elevator, web agitator, elevation angle, heap, forward speed, screening quality, soil impurities

Funding: The study was supported by the Council for Grants of the President of the Russian Federation (SP-1004.2021.1).

Conflict of interest: The authors declare no conflict of interest.

For citation: Dorokhov A.S., Sibirev A.V., Aksenov A.G., Mosyakov M.A. Results of Laboratory Studies of Soil Sifting in a Rod Elevator with Asymmetric Arrangement of Web Agitators and Adjustable Elevator Apron Angle. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2021; 31(3):380-402. DOI: https://doi.org/10.15507/2658-4123.031.202103.380-402

Contribution of the authors:
A. S. Dorokhov – formulating the basic concept of the study.
A. V. Sibirev – literature and patent analysis, writing the draft.
A. G. Aksenov – critical analysis.
M. A. Mosyakov – experimentation.

All authors have read and approved the final manuscript.

Submitted 20.12.2020; approved after reviewing 25.01.2021;
accepted for publication 07.02.2021

 

REFERENCES

1. Sibirev A.V., Aksenov A.G., Mosyakov M.A. Determining Design and Technological Parameters of the Separating Rod Conveyor with Assymetrical Shakers. Vestnik FGOU VPO “Moskovskiy gosudarstvennyy agroinzhenernyy universitet imeni V.P. Goryachkina” = Moscow Goryachkin Agroengineering University Bulletin. 2018; (4):15-20. Available at: http://elib.timacad.ru/dl/full/vmgau-02-2018-04.pdf/download/vmgau-02-2018-04.pdf (accessed 18.12.2020). (In Russ., abstract in Eng.)

2. Asghar T., Ghafoor A., Munir A., et al. Design Modification and Field Testing of Groundnut Digger. Asian Journal of Science and Technology. 2014; 5(7):389-394. Available at: https://www.researchgate.net/publication/274373280_DESIGN_MODIFICATION_AND_FIELD_TESTING_OF_GROUNDNUT_DIGGER (accessed 18.12.2020). (In Eng.)

3. Akdemir B., Ulger P., Arin S. Mechanized Panting and Harvesting of Onion. Agricultural Mechanization in Asia, Africa & Latin America. 1993; 24(4):23-26. Available at: https://www.researchgate.net/publication/289056030_Mechanized_panting_and_harvestiong_of_onion (accessed 18.12.2020). (In Eng.)

4. Sibirev A.V., Aksenov A.G., Mosyakov M.A. Experimental Laboratory Research of Separation Intensity of Onion Set Heaps on Rod Elevator. Journal of Engineering and Applied Sciences. 2018; 13(23):10086-10091. Available at: https://www.researchgate.net/publication/329752893_Experimental_laboratory_research_of_separation_intensity_of_onion_set_heaps_on_rod_elevator (accessed 18.12.2020). (In Eng.)

5. Sibirev A.V., Aksenov A.G., Mosyakov M.A. The Results of the Experimental Study of Onions Separation Using a Rod Elevator with Asymmetric Installed Burners. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2019; 29(1):91-107. (In Russ., abstract in Eng.) DOI: https://doi.org/10.15507/2658-4123.029.201901.091-107

6. Dorokhov A.S., Sibirev А.V., Aksenov A.G. The Results of Field Tests of an Onion Set Harvesting Machine Equipped with a Shaker Arrangement Asymmetrical Bar Elevator. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2020; 30(1):133-148. (In Russ., abstract in Eng.) DOI: https://doi.org/10.15507/2658-4123.030.202001.133-148

7. Pasaman B., Zakharchuk V. The Determination of the Parameters of a Ploughshare-Rotor Potato Digger. ECONTECHMOD. 2012; (2):43-47. Available at: http://www.journals.pan.pl/dlibra/publication/98931/edition/85237/content (accessed 18.12.2020). (In Eng.)

8. Abd El-Rahman M.M. Development and Performance Evaluation of a Simple Grading Machine Suitable for Onion Sets. Journal of Soil Sciences and Agricultural Engineering. 2011; 2(2):213-226. (In Eng.) DOI: https://doi.org/10.21608/JSSAE.2011.55418

9. Khura T., Mani I., Srivastava A. I C A R Design and Development of Tractor-Drawn Onion (Allium Cepa) Harvester. Indian Journal of Agricultural Sciences. 2011; 81(6):528-532. Available at: https://www.researchgate.net/publication/267251851_I_C_A_R_Design_and_development_of_tractor-drawn_onion_Allium_cepa_harvester (accessed 18.12.2020). (In Eng.)

10. Indraja D., Ajkhilesh J., Vishal P., et al. A Review Paper Based on Design and Development of an Onion Harvesting Machine. Journal of Information and Computational Science. 2019; 9(12):333-337. Available at: https://www.researchgate.net/publication/339201506 (accessed 18.12.2020). (In Eng.)

11. Bachche S. Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey. Robotics. 2015; 4(2):194-222. (In Eng.) DOI: https://doi.org/10.3390/robotics4020194

12. Dai F., Zhao W., Sun W. Design and Experiment of Combined Operation Machine for Potato Harvesting and Plastic Film Pneumatic Auxiliary Collecting. Transactions of the CSAM. 2018; 49(3):104-113. (In Eng.) DOI: https://doi.org/10.6041/j.issn.1000-1298.2017.01.009

13. Li Z., Li P., Yang H., Wang Y. Stability Tests of Two-Finger Tomato Grasping for Harvesting Robots. Biosystems Engineering. 2013; 116(2):163-170. (In Eng.) DOI: https://doi.org/10.1016/j.biosystemseng.2013.07.017

14. Byshov N.V., Borychev S.N., Yakutin N.N., et al. On The Interaction of the Tuber Band with the Working Bodies of the Lifter. Vestnik Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta im. P.A. Kostycheva = Bulletin of Ryazan State Agrotechnological University Named after P.A. Kostychev. 2018; (4):161-167. Available at: https://www.elibrary.ru/item.asp?id=36673758 (accessed 18.12.2020). (In Russ., abstract in Eng.)

15. Nesterovich E.O., Byshov N.V., Kostenko M.Yu., et al. Investigation of the Lemech Type Resistance with a Variable Tilt Angle. Vestnik Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta im. P.A. Kostycheva = Bulletin of Ryazan State Agrotechnological University Named after P.A. Kostychev. 2018; (1):84-89. Available at: https://www.elibrary.ru/item.asp?id=35056434 (accessed 18.12.2020). (In Russ., abstract in Eng.)

16. Byshov N.V., Yakutin N.N., Kоveshnikov R.Y., et al. Modernization of Digging Machine KST-1.4. Vestnik Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta im. P.A. Kostycheva = Bulletin of Ryazan State Agrotechnological University Named after P.A. Kostychev. 2016; (2):75-78. Available at: http://vestnik.rgatu.ru/archive/2016_2.pdf (accessed 18.12.2020). (In Russ., abstract in Eng.)

17. Bachche S., Oka K. Modeling and Performance Testing of End-Effector for Sweet Pepper Harvesting Robot. Journal of Robotics and Mechatronics. 2013; 25(4):705-717. (In Eng.) DOI: https://doi.org/10.20965/jrm.2013.p0705

18. Yakutin N.N., Byshov N.V., Rembalovich G.K. Results of Experimental Research of Improved Potato Digger KTN-2V Harvesting Process. Politematicheskiy setevoy elektronnyiy nauchnyiy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta = Scientific Journal of the Kuban State Agrarian University. 2014; (99):1052-1061. Available at: https://clck.ru/WcriE (accessed 18.12.2020). (In Russ., abstract in Eng.)

19. Kalinin A.B., Smelik V.A., Teplinskiy I.Z., Pervukhina O.N. Choice and Justification Parameters of Ecological State in the Agroecosystem for Monitoring Technology Process Growing Agricultural Crops. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta = Bulletin of the St. Petersburg State Agrarian University. 2015; (39):315-319. Available at: https://clck.ru/Wcs6y (accessed 18.12.2020). (In Russ., abstract in Eng.)

20. Protasov A.A., Makarov S.A. Technology and Means of Mechanization for Two-Phase Harvesting of Seed Onion and Universal Harvesting Machines. Agrarnyy nauchnyy zhurnal = Agrarian Scientific Journal. 2018; (10):59-62. (In Russ., abstract in Eng.) DOI: https://doi.org/10.28983/asj.v0i10.592

21. Kumar D., Tripathi A. Performance Evaluation of Tractor Drawn Potato Digger Cum – Elevator. International Journal of Agricultural Science and Research. 2017; 7(2):433-448. Available at: http://www.tjprc.org/publishpapers/2-50-1490605027-55.IJASRAPR201755.pdf (accessed 18.12.2020). (In Eng.)

22. Massah J., Lotfi A., Arabhosseini A. Effect of Blade Angle and Speed of Onion Harvester on Mechanical Damage of Onion Bulbs. Agricultural Mechanization in Asia, Africa & Latin America. 2012; 43(3):60-63. Available at: https://www.researchgate.net/publication/287778155_Effect_of_Blade_Angle_and_Speed_of_Onion_Harvester_on_Mechanical_Damage_of_Onion_Bul bs (accessed 18.12.2020). (In Eng.)

23. Jothi Shanmugam C., Senthilkumar G. Indigenous Development of Low Cost Harvesting Machine. ARPN Journal of Engineering and Applied Sciences. 2017; 12(5):4489-4490. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2017/jeas_0817_6236.pdf (accessed 18.12.2020). (In Eng.)

24. Mayer V., Vejchar D., Pastorková L. Measurement of Potato Tubers Resistance against Mechanical Loading. Research in Agricultural Engineering. 2008; 54(1):22-31. (In Eng.) DOI: https://doi.org/10.17221/708-RAE

25. Sibirev A.V., Aksenov A.G., Kolchin N.N., Ponomarev A.G. Separating Conveyor of Root and Tuber Crops Harvesting Machine. Patent 2,638,190 Russian Federation. 12 December 2017. 8 p. Available at: https://viewer.rusneb.ru/ru/000224_000128_0002638190_20171212_C1_RU?page=1&rotate=0&theme=white (accessed 18.12.2020). (In Russ., abstract in Eng.)

26. Wu J., Li H., Sun W., et al. Experiment on Poke Finger Wheel Type Potato Digger. Transactions of the CSAE. 2011; 27(7):173-177. (In Chin.) DOI: https://doi.org/10.3969/j.issn.1000-1298.2010.12.016

27. Shi L.R., Wu J.M., Zhao W.Y., et al. Design and Experiment on Potato Digger of Disc Ce-Grate Type. Transactions of the CSAE. 2012; 28(24):15-21. (In Eng.)

28. Weil Z., Li H., Mao Y., et al. Experiment and Analysis of Potato-Soil Separation Based on Impact Recording Technology. International Journal of Agricultural and Biological Engineering. 2019; 12(5):71-80. Available at: https://www.ijabe.org/index.php/ijabe/article/view/4573 (accessed 18.12.2020). (In Eng.)

29. Edrris M.K., Al-Gaadi K.A., Hassaballa A.A., et al. Impact of Soil Compaction on the Engineering Properties of Potato Tubers. International Journal of Agricultural and Biological Engineering. 2020; 13(2):163-167. Available at: https://www.ijabe.org/index.php/ijabe/article/view/4818/pdf (accessed 18.12.2020). (In Eng.)

30. Cubero S., Aleixos N., Moltó E., et al. Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology. 2011; 4:287-502. (In Eng.) DOI: https://doi.org/10.1007/s11947-010-0411-8

  

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla