PDF To download article.

UDK 004.9:658.512

DOI: 10.15507/2658-4123.029.201903.345-365

 

Automation of Obtaining Parts Parameters for Tasks of Design-Technological Parametrization

 

Alexander V. Shchekin
Chief of the Automation of CNC Programming Research Laboratory, National Research Mordovia State University (68 Bolshevistskaya St., Saransk 430005, Russia), ResearcherID: F-4689-2019, ORCID: https://orcid.org/0000-0001-5209-166X, This email address is being protected from spambots. You need JavaScript enabled to view it.

Introduction. Automation of obtaining design parameters of the part is the most important step in the integration of the design, process planning and manufacturing. The aim of this work is to obtain part parameters, the numerical values of which can be used in parametric calculations.
Materials and Methods. The work is the development of the concept of end-to-end design and technological parametrization in Computer-Aided Manufacturing. The theoretical research is based on the formal theory of data representation and processing, the set theory, and the theory of hierarchical multilevel systems. The software implementation was carried out in the Visual Studio C++ environment using KOMPAS-3D application program interface and the C3D geometric kernel application program interface.
Results. A method has been developed for obtaining the initial part parameters during the transfer of information from the design engineering Computer-Aided Manufacturing systems to the technological preparation of production. A logical data structure in a relational form was developed, which made it possible to eliminate redundancy and ensure the consistency of the presentation of part parameters, taking into account the priorities of the sources of design information. The software method is implemented as part of the commercial Computer-Aided Manufacturing system for the KOMPAS- 3D platform. Source parameters (metadata, material properties, annotation parameters, parametric variables) are extracted from the 3D-model using application program interface. Integration with the KOMPAS-3D materials directory has been implemented to obtain material properties.
Discussion and Conclusion. The obtaining of initial information about the part is the first step in the implementation of the end-to-end design and technological parameterization in the field of Computer-Aided Manufacturing. Due to the design and technological parameterization and associativity of the toolpath, a through technological project can be built when changes made by the designer to the part will be automatically transferred to the technological model and to the control program for the CNC machine. End-to-end parametrization is most efficiently used for parametrized parts that have several dimensional modifications. Further development of the technological parameterization is expected to focus on the tasks of the automatic workpiece selection, cutting tools and devices.

Keywords: parametrization, Computer-Aided Design / Computer-Aided Manufacturing, KOMPAS-3D, control program, 3D-model, integration, Application Program Interface

For citation: Shchekin A.V. Automation of Obtaining Parts Parameters for Tasks of Design-Technological Parametrization. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2019; 29(3):345-365. DOI: https://doi.org/10.15507/2658- 4123.029.201903.345-365

The author has read and approved the final manuscript.

Received 18.03.2019; revised 18.04.2019; published online 30.09.2019

 

REFERENCES

1. Maksimovskiy D.E. Automation of Process Design by Design-Technological Parameterization. Vestnik mashinostroeniya = Russian Engineering Research. 2011; (9):63-66. Available at: https://www.mashin.ru/ files/2011/ve0911_web.pdf (accessed 23.04.2019). (In Russ.)

2. Kalyakulin S.Yu., Kuzmin V.V. Information Models as a Tool to Improve the Automation of Calculations of Process Parameters. Vestnik MGTU «Stankin» = MSTU Stankin Bulletin. 2015; (2):89-92. Available at: http://www.stankin-journal.ru/ru/articles/1243 (accessed 23.04.2019). (In Russ.)

3.Kalyakulin S.Yu. Algorithm for Calculating the Parameters of the Initial Blank in the Sitep MO Automated Design System. Vestnik mashinostroeniya = Russian Engineering Research. 2014; 34(11):713-715. Available at: https://link.springer.com/article/10.3103/S1068798X14110082 (accessed 23.04.2019). (In Eng.)

4.Kalyakulin S.Yu., Kuzmin V.V., Mitin E.V., et al. Developing a Mathematical Model of a Part Based on Graphics System Models. Inzhenernyye tekhnologii i sistemy = Engineering Technology and Systems. 2019; 29(1):67-76. (In Russ.) DOI: https://doi.org/10.15507/2658-4123.029.201901.067-076

5. Kalyakulin S.Yu., Kuzmin V.V. Automation of the Selection of Measuring Equipment on the Basis of Design and Technological Parametrization in SAPR TP. Tehnologiya mashinostroeniya = Engineering Technology. 2017; (11):46-49. Available at: http://www.ic-tm.ru/info/11_22 (accessed 23.04.2019). (In Eng.)

6. Kalyakulin S.Yu., Kuzmin V.V. Development of Mathematical Model of Process Parameters. Vestnik MGTU «Stankin» = MSTU Stankin Bulletin. 2014. (3):40-44. Available at: http://www.stankin-journal. ru/ru/articles/1032 (accessed 23.04.2019). (In Russ.)

7. Schekin A.V. Design and Technological Parametrization as Part of an Integrated CAM System. Informatsionnyie tehnologii = Information Technologies. 2019; 25(7):34-54. (In Russ.) DOI: https://doi.org/10.17587/it.25.387-396

8. Babic B., Nesic N., Miljkovic Z. A Review of Automated Feature Recognition with Rule- Based Pattern Recognition. Computers in Industry. 2008; 59(4):321-337. (In Eng.) DOI: https:// doi.org/10.1016/j.compind.2007.09.001

9. Mesbahi A.E., Jaider O., Rechia A. Automatic Recognition of Isolated and Interacting Manufacturing Features in Milling Process. International Journal of Engineering Research and Applications. 2014; 4(10):57-72. Available at: https://pdfs.semanticscholar.org/a7fe/c2705c5d76d2a396454a8e2cfe12993fd265.pdf (accessed 23.04.2019). (In Eng.)

10. Sanfilippo E.M., Borgo S. What are Features? An Ontology-Based Review of the Literature. Computer- Aided Design. 2016; 80:9-18. (In Eng.) DOI: https://doi.org/10.1016/j.cad.2016.07.001

11. Chlebus E., Krot K. CAD 3D Models Decomposition in Manufacturing Processes. Archives of Civil and Mechanical Engineering. 2016; 16(1):20-29. (In Eng.) DOI: https://doi.org/10.1016/j.acme.2015.09.008

12. Prabhu B.S, Biswas S., Pande S.S. Intelligent System for Extraction of Product Data from CADD Models. Computers in Industry. 2001; 44(1):79-95. Available at: https://pdfs.semanticscholar.org/f1c2/ f08e1c94fb12e0373a9e9f08d4fefa06bd86.pdf (accessed 23.04.2019). (In Eng.)

13. Kang M., Han J., Moon J.G. An Approach for Interlinking Design and Process Planning. Journal of Materials Processing Technology. 2003; 139:589-595. Available at: http://alvarestech.com/temp/ nist2010/joao/CADCAPP1.pdf (accessed 23.04.2019). (In Eng.)

14. Kuzmin V.V., Maksimovskiy D.E. Methods of Transforming the Design Information of Engineering Components. Vestnik MGTU «Stankin» = MSTU «Stankin» Bulletin. 2012; (2):92-95. Available at: http://www.stankin-journal.ru/ru/articles/612 (accessed 23.04.2019). (In Russ.)

15. Shishigin D.S. On Choosing the Technology of Application Software Integration with a CAD-system. Trudy SPIIRAN = SPIIRAS Proceedings. 2016; (4):211-224. (In Russ.) DOI: https://doi.org/10.15622/sp.47.11

16. Kuzmin V.V., Maksimovskiy D.E. Choice of Technological Bases on the Basis of the Decision of a Direct Problem of the Dimensional Analysis. Vestnik MGTU «Stankin» = MSTU Stankin Bulletin. 2012; 2:64-69. Available at: http://www.stankin-journal.ru/ru/articles/590 (accessed 23.04.2019). (In Russ.)

17. Kuzmin V.V. Selection of Technological Bases for Handling Details. Vestnik MGTU «Stankin» = MSTU Stankin Bulletin. 2008; (2):10-14. Available at: https://elibrary.ru/item.asp?id=17287428 (accessed 23.04.2019). (In Russ.)

18. Pankov M. Turning HIMSELF as the Beginning of the Story in Ascona. SAPR i Grafika = CAD and Graphics. 2013; (7):37-43. Available at: https://sapr.ru/article/23925 (accessed 23.04.2019). (In Russ.)

19. Sсhekin A.V., Suldin S.P., Mitin E.V. Post-Processor of NC System «MAJaK 600T» for CAMapplication. Vestnik Mordovskogo Universiteta = Mordovia University Bulletin. 2014; (1):161-164. Available at: http://vestnik.mrsu.ru/index.php/ru/articles/38-14-12/208-10-15507-vmu-025-201502-67 (accessed 23.04.2019). (In Russ.)

20. Shchekin A.V., Suldin S.P., Mitin E.V. Simulation of the Machining of a Bush in the KOMPAS-3D System. Russian Engineering Research. 2017; 37(11):987-990. (In Eng.) DOI: https://doi.org/10.3103/ S1068798X17110156

21. Shchekin A.V., Suldin S.P., Mitin E.V. CNC Module for Turning: a New CAM-Application. Machine Tool. 2017; (8):16-18. Available at: http://stinyournal.ru/soderzhanie-stin-2017/ (accessed 23.04.2019). (In Russ.)

22. Schekin A.V., Suldin S.P. Associativity of the Tool Paths in the CAM-Application CNC-Module. Lathe Operation. Mekhatronika, avtomatizatsiya, upravlenie = Mechatronics, Automation, Management. 2015; 16(8):570-575. (In Russ.) DOI: https://doi.org/10.17587/mau.16.570-575

23. Kamnev A. The Application Programming Interface of the Geometric Kernel C3D, Its Application and the Main Difference from the API of the Kompas-3D System. SAPR i grafika = CAD and Graphics. 2016; (5):36-38. Available at: https://sapr.ru/article/25210 (accessed 23.04.2019). (In Russ.)

24. Cherepashkov A. Designed in the Academic Environment of a Virtual Enterprise. SAPR i grafika = CAD and Graphics. 2014; (1):76-78. Available at: https://sapr.ru/article/24352 (accessed 23.04.2019). (In Russ.)

 

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla