PDF To download article.

DOI: 10.15507/2658-4123.033.202301.021-036

 

Influence of Suction Hole Diameter of Precision Seed Machine on the Characteristics of Feeding Corn and Sunflower Seeds

 

Andrey Yu. Nesmiyan
Dr.Sci. (Engr.), Professor of the Chair of Technology and Means of Mechanization of Agroindustrial Complex, Azov-Black Sea Engineering Institute of Don State Agrarian University (21 Lenin St., 347740 Zernograd, Russian Federation), ORCID: https://orcid.org/0000-0002-5556-1767, Researcher ID: N-6221-2018, This email address is being protected from spambots. You need JavaScript enabled to view it.

Konstantin P. Dubina
Cand.Sci. (Engr.), Assistant of the Chair of Technical Mechanics and Physics, Azov-Black Sea Engineering Institute of Don State Agrarian University (21 Lenin St., 347740 Zernograd, Russian Federation), ORCID: https://orcid.org/0000-0003-0543-9306, Researcher ID: GSD-2794-2022, This email address is being protected from spambots. You need JavaScript enabled to view it.

Anastasiya P. Zhigailova
Postgraduate Student, Azov-Black Sea Engineering Institute of Don State Agrarian University (21 Lenin St., 347740 Zernograd, Russian Federation), ORCID: https://orcid.org/0000-0003-0904-0933, Researcher ID: GWQ-5701-2022, This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract
Introduction. The study of working processes of row crop seeders, their improvement, increase in productivity and (or) quality of work are topical agroengineering tasks.
Aim of the Article. The article deals with developing proposals to optimize the design of vacuum mechanisms for row crop seeders based on the analysis of the laws of the process of dosing sunflower and corn seeds by suction holes of the seed discs.
Materials and Methods. The operation characteristics of the vacuum seeding mechanism depend on the diameter of the suction holes and the rarefaction in the vacuum chamber. Hypothetically, it can be assumed that with a constant calculated value of the suction force, it is possible to choose a ratio of these characteristics in which the number of skips and group feeding of seeds will not exceed the tolerance of agro-requirements. Verification of this assumption was carried out experimentally in laboratory conditions.
Results. There were found polynomials describing with a fair degree of accuracy the dependence of formation of group feedings of sunflower and corn seeds on the diameter of suction holes.
Discussion and Conclusion. The frequency of group feeding of the seeds less than 0.05% will be achieved with suction hole diameters of about 0.8 mm for sunflower and about 1.9 mm for corn. In this case, the values of rarefaction in the vacuum chamber must be 31–56 kPa that exceeds the capabilities of the pneumatic systems of existing row seeders. Accordingly, the modernization of the seeding mechanisms of vacuum row seeders by reducing the diameter of the suction holes should be accompanied by additional improvements aimed at increasing their gripping ability.

Keywords: row crops, vacuum seeding mechanism, diameter of suction holes, group feeding of seeds, rarefaction, ejector of extra seeds

Conflict of interest: The authors declare no conflict of interest.

Funding: The study was financially supported by the Foundation for the Promotion of Innovation.

For citation: Nesmiyan A.Yu., Dubina K.P., Zhigailova A.P. Influence of Suction Hole Diameter of Precision Seed Machine on the Characteristics of Feeding Corn and Sunflower Seeds. Engineering Technologies and Systems. 2023;33(1):21‒36. doi: https://doi.org/10.15507/2658-4123.033.202301.021-036

Authors contribution:
A. Yu. Nesmiyan – scientific guidance, formulation of the basic concept of research, setting the research objectives, preparation of the initial version of the text, the formation of private and general conclusions.
K. P. Dubina – analysis of literary sources, conducting experimental research, critical analysis of the results, the formation of private and general conclusions.
A. P. Zhigailova – literary and patent data analysis,

All authors have read and approved the final manuscript.

Submitted 04.10.2022; revised 20.11.2022;
accepted 17.01.2023

 

REFERENCES

1. Orjuela S., Pabon J., Fonseca M. Experimental Assessment of Emissions in Low Displacement Diesel Engines Operating with Biodiesel Blends of Palm and Sunflower Oil. International Journal on Engineering Applications. 2021;9(3):128–136. doi: https://doi.org/10.15866/irea.v9i3.19810

2. Bellahkim M.A., Gueraoui K., Mzerd A., et al. Mathematical Modeling of Anaerobic Digestion of Maize Waste: a Case Study. International Journal on Engineering Applications. 2021;9(3):173–179. doi: https://doi.org/10.15866/irea.v9i3.19167

3. Debaeke P., Casadebaig P., Flenet F., Langlade N. Sunflower Crop and Climate Change: Vulnerability, Adaptation, and Mitigation Potential from Case-Studies in Europe. OCL Oilseeds Fats Crops Lipids. 2017;24(1). doi: https://doi.org/10.1051/ocl/2016052

4. Neumann M., Horts E.H., Figueira D.N., et al. Potential of Corn Silage Production in Different Sowing Times in the Paraná Midwest Region. Applied Research & Agrotechnology. 2016;9(1):37–44. doi: https://doi.org/10.5935/PAET.V9.N1.04

5. Markova N.V. Influence of Sowing Terms and Technological Features of Cultivation on the Formation of Yield and Seed Quality of Hybrids of Sunflower. Herald of Agrarian Science of Black Sea Region. 2010;(2):212–218.

6. Baranovsky A.V., Sadovoy A.S., Kapustin S.I., Kapustin A.S. Optimization of Sowing Time for Grain Sorghum and Millet. Bioscience Research. 2020;17(2):1121–1128.

7. Shirkhani A., Ahmadi G.H., Mohammadi G., Ghitouli M. Effects of Cropping Architect and Sowing Date on Forage Quantity and Quality of Corn (Zea Maize L.) as a Second Crop in Western Iran. Annals of Biological Research. 2012;3(9):4307–4312. Available at: https://clck.ru/33T3wm (accessed 17.09.2022).

8. Pozzolo O.R., Hidalgo R.J., Domínguez J.F., Giménez L. Corn (Zea mais L.) Sowing Quality in the Province of Corrientes, Argentina. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. 2020;52(2):111–123. Available at: https://revistas.uncu.edu.ar/ojs/index.php/RFCA/article/ view/4042 (accessed 17.09.2022).

9. Kireev I.M., Koval Z.M., Zimin F.A. Distribution of Sunflower Seeds in a Row Depending on the Speed Modes of Operation of the Pneumatic Dropping Device. Machinery and Equipment for Rural Area. 2021;(8):14–17. (In Russ., abstract in Eng.) doi: https://doi.org/10.33267/2072-9642-2021-8-14-17

10. Lavruhin P.V., Kazakova A.S., Medvedko S.N., Ivanov P.A. Seeding Operation – A Key Element of Creation of Crop Technologies of the Sixth Technological Paradigm. Don Agrarian Science Bulletin. 2021;(4):24‒32. Available at: https://clck.ru/33T49W (accessed 17.09.2021). (In Russ., abstract in Eng.)

11. Zavrazhnov A.A., Zavrazhnov A.I., Zemlyanoj A.A. Geometry of Sowing around Crops. Rossiiskaia Selskokhoziaistvennaia Nauka. 2022;(1):59–66. (In Russ., abstract in Eng.) doi: https://doi.org/10.31857/S2500262722010100

12. Kireev I.M., Koval Z.M., Zimin F.A. Ensuring the Operating Modes of the Seeding Apparatus Specialized Equipment. Tractors and Agricultural Machinery. 2021;(4):6–12. (In Russ., abstract in Eng.) doi: https://doi.org/10.31992/0321-4443-2021-4-6-12

13. Kireev I.M., Koval Z.M., Zimin F.A. New Method and Means of Monitoring the Quality of Pneumatic Drilling Mechanism for Precision Seed Sowing. Machinery and Equipment for Rural Area. 2020;(1):24–27. (In Russ., abstract in Eng.) doi: https://doi.org/10.33267/2072-9642-2020-1-24-27

14. Dolzhikova N.N., Dolzhikov V.V. [Quality Sowing of Sunflower Seeds]. Tendencii razvitiya nauki i obrazovaniya. 2020;(2):86–88. (In Russ.) doi: https://doi.org/10.18411/lj-07-2020-42

15. Zavrazhnov A., Balashov A., Strygin S., et al. [Modernization of the Seeding Control System on Row Crop Seeders]. Selskii Mehanizator. 2021;(7):8–9. (In Russ.)

16. Dubina K.P. Optimization of Supply of Corn Seeds by Accurate Accelerating Variable Section. Agrarian Scientific Journal. 2019;(2):86–91. (In Russ., abstract in Eng.) doi: https://doi.org/10.28983/asj.y2019i2pp86-91

17. Kryuchin N.P., Kotov D.N., Artamonova O.A. [Theoretical Study of the Movement of Soaked Seeds by the Working Bodies of the Torsion-Pin Sowing Machine]. Izvestia Orenburg State Agrarian University. 2020;(2):148–152. (In Russ.)

18. Kryuchin N.P., Gorbachev A.P. Improvement of the Technological Process of Sowing Sunflower Seeds with a Pneumatic Seed Planter. IOP Conference Series. 2021. doi: https://doi.org/10.1088/1755-1315/845/1/012136

19. Zavrazhnov A.A., Zavrazhnov A.I., Shepelev V.Yu., Yakushev A.V. The Main Directions of Improvement of Precision Seeders of Row Crops. Bulletin NGIEI. 2022;(1): 7–21. (In Russ., abstract in Eng.) doi: https://doi.org/10.24412/2227-9407-2022-1-7-21

20. Khizhnyak V.I., Maltsev P.S., Taranov V.A., et al. Analysis of the Construction of Massed Seed Drills. Vestnik agrarnoi nauki Dona. 2020;(4):42–52. Available at: http://vd.achgaa.ru/archive.html (accessed 17.09.2022). (In Russ., abstract in Eng.)

21. Khizhnyak V.I., Shchirov V.V., Nesmiyan A.Yu., et al. Evaluation of the Efficiency of Row-Crop Seeders using Vacuum and Extrabaric Seed Metering Methods. IOP Conference Series: Earth and Environmental Science. 2021;659. doi: https://doi.org/10.1088/1755-1315/659/1/012045

22. Khizhnyak V.I., Kochergin A.S., Taranov V.A., Onishchenko E.A. Development of Dosing Module of Space Seeding Machine SSM-870. Vestnik agrarnoi nauki Dona. 2020;(2):27–33. Available at: http://xn--80aaak3h.xn--p1ai/files/vestnik/VD2_2020_50.pdf (accessed 17.09.2022). (In Russ., abstract in Eng.)

23. Markvo I., Zubrilina E., Novikov V. Precise Seeding Planter Concept with Air Pumped Seedtube. E3S Web of Conferences. 2019;126. doi: https://doi.org/10.1051/e3sconf/201912600054

24. Khizhnyak V.I., Maltsev P.S., Nesmiyan A.Yu., et al. Theoretical Research of the Process of Dosing Seeds Using an Injection Air Flow. Vestnik agrarnoi nauki Dona. 2021;(4):46–54. Available at: http://vd.achgaa.ru/archive.html (accessed 17.09.2022). (In Russ., abstract in Eng.)

25. Krasnov I.N., Kravchenko I.A., Kapov S.N., et al. Substantiation of Seed Disc Construction for Sowing Seeds. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018;9(3):985–996. Available at: http://ачии.рф/files/707f4495-1936-4748-b87d-2d7eafb2b794.pdf (accessed 17.09.2022). (In Russ., abstract in Eng.)

26. Nesmiyan A., Khasanov E., Dubina K., Iakupov A. Vacuum Planter’s Seed Supply Quality as Affected by the Diameter of Suction Holes. International Review of Automatic Control. 2022;15(2):52–57. doi: https://doi.org/10.15866/ireaco.v15i2.21493

27. Nesmiyan A. Probabilistic Modeling for Dynamic Processes. E3S Web of Conferences. 2020;175. doi: https://doi.org/10.1051/e3sconf/202017505019

28. Zavrazhnov A.A., Zavrazhnov A.I., Brosalin V.G., et al. [Pneumatic Sowing Machine]. Patent 207,950 Russian Federation. 2021 November 25. 4 p. (In Russ.)

29. Lobachevskii P.Ya., Hizhnyak V.I., Nesmiyan A.Yu., Avramenko F.V. [Test Stand For Sowing Units of Precision Air Seeders]. Patent 2,356,210 Russian Federation. 2009 May 27. Available at: https://yandex.ru/patents/doc/RU2356210C1_20090527 (accessed 17.09.2021). (In Russ.)

 

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla