PDF To download article.

DOI: 10.15507/2658-4123.032.202201.010-027

 

Methods of Pretreating Raw Materials Containing Organic Compounds before Anaerobic Digestion

 

Viktor V. Palvinskiy
Associate Professor of the Department of Technical Support of the Agroindustrial Complex, Irkutsk State Agricultural University (Molodezhnyy, Irkutsk Oblast 664038, Russian Federation), Cand.Sci. (Engr.), ORCID: https://orcid.org/0000-0003-0795-5304, Researcher ID: ABA-1083-2021, This email address is being protected from spambots. You need JavaScript enabled to view it.

Filipp A. Vasilev
Head of the Chair of Technical Support of the Agroindustrial Complex, Irkutsk State Agricultural University (Molodezhnyy, Irkutsk Oblast 664038, Russian Federation), Cand.Sci. (Engr.), Associate Professor, ORCID: https://orcid.org/0000-0002-2875-1573, Researcher ID: ABA-1219-2021, This email address is being protected from spambots. You need JavaScript enabled to view it.

Victor K. Evteev
Professor-Advisor of the Department of Technical Support of the Agroindustrial Complex, Irkutsk State Agricultural University (Molodezhnyy, Irkutsk Oblast 664038, Russian Federation), Cand.Sci. (Engr.), Associate Professor, ORCID: https://orcid.org/0000-0002-3781-9963, Researcher ID: ABA-1363-2021

Abstract 
Introduction. The volume of accumulated organ-containing non-recyclable waste products in Russia is increasing. Existing technologies make it possible to recycle these waste products through using anaerobic digestion to produce biogas and fertilizers. The organic portions of waste consist mostly of hard-to-degrade lignin, cellulose, and extracellular polymers, which make anaerobic digestion difficult. Pretreating is necessary to make the raw materials available to microorganisms for bioavailability and deeper degradation. There are many different types of pretreating with their own specific effects on the raw materials. To improve understanding the process of pretreating organic raw materials prior to anaerobic digestion, and to improve the quality of the decisions made, pretreatment methods need to be identified and systematized.
Materials and Methods. The subject of the study is the relationship between the effects of methods, techniques and specific operations of pretreatment for anaerobic digestion. The main method of this study is the analysis of data on the application of different methods to increase the bioavailability and degree of decomposition of organic matter of waste products during anaerobic digestion.
Results. The scheme of preparatory operations and methods for pre-treatment of organic waste products before anaerobic digestion is developed. It is revealed that each method (mechanical, thermal, electromagnetic, chemical, biological and combined) contains many practices, which are divided into particular techniques. The mechanisms of influence that improve further processing are described.
Discussion and Conclusion. The choice methods of pretreatment depends on the purpose and tasks performed, the physical and chemical composition of raw materials, access to energy, biological and chemical resources. Advantages and disadvantages of various methods should be studied in more detail and ranked into private methods according to energy costs and the effect they produce. The comparison of the research results reveals disadvantages and difficulties.

Keywords: organ-containing waste products, pre-treatment, biogas, anaerobic fermentation, biodegradability, hydrolysis, acidogenesis, acetogenesis, methanogenesis

Acknowlegments: The authors would like to thank the anonymous reviewers.

The authors declare no conflict of interest.

For citation: Palvinskiy V.V., Vasilev F.A., Evteev V.K. Methods of Pretreating Raw Materials Containing Organic Compounds before Anaerobic Digestion. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2022; 32(1):10-27. doi: https://doi.org/10.15507/2658-4123.032.202201.010-027

Contribution of the authors:
V. V. Palvinskiy – analysis of literary data, describing methods of pretreatment, text editing.
F. A. Vasilev – forming the structure of the article, finalizing the initial text, drawing finding and conclusions.
V. K. Evteev – scientific guidance, analysis and revision of the text.

All authors have read and approved the final manuscript.

Submitted 04.10.2021; approved after reviewing 10.11.2021;
accepted for publication 03.12.2021

 

REFERENCES

1. Kalyuzhnyi S.V. Energy Potential of Anaerobic Digestion of Wastes Produced in Russia via Biogas and Microbial Fuel Cell Technologies. Biotekhnologiya = Biotechnology. 2008; (3):3-12. URL: http://www.biotech-jr.ru/?view=tcontent&vol=24&vyear=2008&numb=3 (accessed 05.05.2021). (In Russ., abstract in Eng.)

2. Vasilev F., Palvinskiy V., Takhanov M. Increasing the Efficiency of Biogas Production from Organic Waste. Baikal Letter DAAD. 2019; 1:49-51. Available at: https://www.elibrary.ru/item.asp?id=41108434 (accessed 05.05.2021). (In Eng.)

3. Vasilyevа A.S., Evteev V.K., Vasiliev F.A. Anaerobic Filter with Cyclic Perturbation. Vestnik APK Stavropolya = Agricultural Bulletin of Stavropol Region. 2015; (4):24-28. Available at: http://bibl-stgau.ru/images/Files/number22.pdf (accessed 05.05.2021). (In Russ., abstract in Eng.)

4. Zhang J., Hou W., Bao J. Reactors for High Solid Loading Pretreatment of Lignocellulosic Biomass. In: Bao J., Ye Q., Zhong J.J. (eds.). Bioreactor Engineering Research and Industrial Applications II. Advances in Biochemical Engineering/Biotechnology. Vol 152. Heidelberg: Springer; 2015. (In Eng.) doi: https://doi.org/10.1007/10_2015_307

5. Hendriks A.T.W.M., Zeeman G. Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresource Technology. 2009; 100(1):10-18. (In Eng.) doi: https://doi.org/10.1016/j.biortech.2008.05.027

6. Gonzalez A., Hendriks A.T.W.M., van Lier J.B., de Kreuk M. Pre-Treatments to Enhance the Biodegradability of Waste Activated Sludge: Elucidating the Rate Limiting Step. Biotechnology Advances. 2018; 36(5):1434-1469. (In Eng.) doi: https://doi.org/10.1016/j.biotechadv.2018.06.001

7. Hjorth M., Gränitz K., Adamsen A.P.S., Møller H.B. Extrusion as a Pretreatment to Increase Biogas Production. Bioresource Technology. 2011; 102(8):4989-4994. (In Eng.) doi: https://doi.org/10.1016/j.biortech.2010.11.128

8. Lamsal B., Yoo J., Brijwani K., Alavi S. Extrusion as a Thermo-Mechanical Pre-Treatment for Lignocellulosic Ethanol. Biomass and Bioenergy. 2010; 34(12):1703-1710. (In Eng.) doi: https://doi.org/10.1016/j.biombioe.2010.06.009

9. Jákói Z., Lemmer B., Hodúr C., Beszédes S. Microwave and Ultrasound Based Methods in Sludge Treatment: A Review. Applied Sciences. 2021; 11(157). (In Eng.) doi: https://doi.org/10.3390/app11157067

10. Le N.T., Julcour-Lebigue C., Delmas H. An Executive Review of Sludge Pretreatment by Sonication. Journal of Environmental Sciences. 2015; 37:139-153. (In Eng.) doi: https://doi.org/10.1016/j.jes.2015.05.031

11. Salihu A., Alam M.Z. Pretreatment Methods of Organic Wastes for Biogas Production. Journal of Applied Sciences. 2016; 16(3):124-137. (In Eng.) doi: https://doi.org/10.3923/jas.2016.124.137

12. Ziemiński K., Romanowska I., Kowalska M. Enzymatic Pretreatment of Lignocellulosic Wastes to Improve Biogas Production. Waste Manag. 2012; 32(6):1131-1137. (In Eng.) doi: https://doi.org/10.1016/j.wasman.2012.01.016

13. Ben’ko E.M., Chukhchin D.G., Lunin V.V. Ozone Pretreatment and Fermentative Hydrolysis of Wheat Straw. Zhurnal fizicheskoy khimii = Russian Journal of Physical Chemistry A. 2017; 91(11):1851-1857. (In Russ., abstract in Eng.) doi: https://doi.org/10.7868/S0044453717110036

14. Carrère H., Dumas C., Battimelli A., et al. Pretreatment Methods to Improve Sludge Anaerobic Degradability: a Review. Journal of Hazardous Materials. 2010; 183(1-3). (In Eng.) doi: https://doi.org/10.1016/j.jhazmat.2010.06.129

15. Devlin D.C., Esteves S.R.R., Dinsdale R.M., Guwy A.J. The Effect of Acid Pretreatment on the Anaerobic Digestion and Dewatering of Waste Activated Sludge. Bioresource Technology. 2011; 102(5):4076-4082. (In Eng.) doi: https://doi.org/10.1016/j.biortech.2010.12.043

16.Ahmad F., Sakamoto I.K., Adorno M.A.T., et al. Methane Production from Hydrogen Peroxide Assisted Hydrothermal Pretreatment of Solid Fraction Sugarcane Bagasse. Waste and Biomass Valorization. 2020; 11:31-50. (In Eng.) doi: https://doi.org/10.1007/s12649-018-0452-1

17. Karuppiah T., Azariah V.E. Biomass Pretreatment for Enhancement of Biogas Production. In: Ban J.R. (eds.). Anaerobic Digestion. IntechOpen; 2019. (In Eng.) doi: https://doi.org/10.5772/intechopen.82088

18. Schell D.J., Harwood C. Milling of Lignocellulosic Biomass. Applied Biochemistry and Biotechnology. 1994; 45:159-168. (In Eng.) doi: https://doi.org/10.1007/BF02941795

19. Kovalev A.A., Kovalev D.A., Grigoriev V.S. Energy Efficiency of Pretreatment of Digester Synthetic Substrate in a Vortex Layer Apparatus. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2020; 30(1):92-110. (In Russ., abstract in Eng.) doi: https://doi.org/10.15507/2658-4123.030.202001.092-110

20. Shin K.S., Kang H. Electron Beam Pretreatment of Sewage Sludge before Anaerobic Digestion. Applied Biochemistry and Biotechnology. 2003; 109:227-239. (In Eng.) doi: https://doi.org/10.1385/abab:109:1-3:227

21. Park B., Ahn J.-H., Kim J., Hwang S. Use of Microwave Pretreatment for Enhanced Anaerobiosis of Secondary Sludge. Water Science and Technology. 2004; 50(9):17-23. (In Eng.) doi: https://doi.org/10.2166/wst.2004.0523

22. Wang M.J. Land Application of Sewage Sludge in China. The Science of the Total Environment. 1997; 197(1-3):149-160. (In Eng.) doi: https://doi.org/10.1016/S0048-9697(97)05426-0

23. Miron Y., Zeeman G., van Lier J.B., Lettinga G. The Role of Sludge Retention Time in the Hydrolysis and Acidification of Lipids, Carbohydrates and Proteins during Digestion of Primary Sludge in CSTR Systems. Water Research. 2000; 34(5):1705-1713. (In Eng.) doi: https://doi.org/10.1016/S0043-1354(99)00280-8

24. Afanasev A.V. [Determination of Optimal Moisture Content of Litter for Its Exothermic Processing into Biologically Active Fertilizers]. AgroEkoInzheneriya = AgroEcoEngineering. 1999; (70):142-147. Available at: https://elibrary.ru/item.asp?id=22961580 (accessed 05.05.2021). (In Russ.)

25. Keller F.A., Hamilton J.E., Nguyen Q.A. Microbial Pretreatment of Biomass. In: Davison B.H., Lee J.W., Finkelstein M., McMillan J.D. (eds.). Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Totowa: Humana Press; 2003. (In Eng.) doi: https://doi.org/10.1007/978-1-4612-0057-4_3

26. Kurbanova M.G., Pozdnyakova O.G. Biotechnological Factors of Anaerobic Processing of the Livestock Farm Wastes. Vestnik KrasGAU = Bulletin of KrasGAU. 2015; (5):173-178. https://clck.ru/augwp (accessed 05.05.2021). (In Russ., abstract in Eng.)

27. Goel R., Tokutomi T., Yasui H. Anaerobic Digestion of Excess Activated Sludge with Ozone Pretreatment. Water Science and Technology. 2003; 47(12):207-214. (In Eng.) doi: https://doi.org/10.2166/wst.2003.0648

28. Bougrier C., Albasi C., Delgenès J.P., Carrère H. Effect of Ultrasonic, Thermal and Ozone Pre-Treatments on Waste Activated Sludge Solubilisation and Anaerobic Biodegradability. Chemical Engineering and Processing: Process Intensification. 2006; 45(8):711-718. (In Eng.) doi: https://doi.org/10.1016/j.cep.2006.02.005

29. Ahlberg-Eliasson K., Liu T., Nadeau E., Schnürer A. Forage Types and Origin of Manure in Codigestion Affect Methane Yield and Microbial Community Structure. Grass and Forage Science. 2018; 73(3):740-757. (In Eng.) doi: https://doi.org/10.1111/gfs.12358

 

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla