PDF To download article.

DOI: 10.15507/2658-4123.031.202104.591-608

 

Experimental Data of Grinding Dried Fibrous Plant Materials

 

Sergey V. Braginets
Leading Researcher of Plant Production Processing Department, Agricultural Research Center “Donskoy” (3 Nauchnyy Gorodok St., Zernograd 347740, Russian Federation), Cand.Sci. (Engr.), ORCID: https://orcid.org/0000-0001-7137-5692, Researcher ID: Y-6307-2019, Scopus ID: 57202639521, This email address is being protected from spambots. You need JavaScript enabled to view it.

Oleg N. Bakhchevnikov
Leading Researcher of Plant Production Processing Department, Agricultural Research Center “Donskoy” (3 Nauchnyy Gorodok St., Zernograd 347740, Russian Federation), Cand.Sci. (Engr.), ORCID: https://orcid.org/0000-0002-3362-5627, Researcher ID: S-3312-2016, Scopus ID: 57202648620, This email address is being protected from spambots. You need JavaScript enabled to view it.

Aleksandr S. Alferov
Researcher of Plant Production Processing Department, Agricultural Research Center “Donskoy” (3 Nauchnyy Gorodok St., Zernograd 347740, Russian Federation), Cand.Sci. (Engr.), ORCID: https://orcid.org/0000-0001-5210-781X, This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract 
Introduction. Developing a method for energy-efficient grinding of fibrous vegetable raw materials to avoid the clogging of grids remains an urgent task. The aim of the research is to study the process of grinding dried fibrous plant materials and to estimate the influence of the device operating characteristics on the quality of grinding and the process energy intensity.
Materials and Methods. The experimental apparatus is a rotor grinder. Its working bodies are alternate knives and hammers. When a hammer is in motion, its triangle side creates the reduced pressure area. There was studied the influence of the linear velocities of knife motion and of feed of raw materials on fractional composition of the grinded materials, grinder productivity, and grinding specific energy capacity.
Results. It is found that the change in the fractional composition of the grinded product occurs when the speed of the rotor knives increases. Optimal range of knife speed for producing the product of the required fractional composition is 55‒75 m/s. The increase in the speed leads to increasing productivity, but is accompanied by the growth of specific power intensity. If the rotor speed is constant, the increase of raw material feed increases the grinder productivity, but only up to a certain value. After that, the productivity decreases because of excessive filling of the working chamber with raw materials and clogging of the grates. For each value of the knife speed, there is an optimal feed that ensures the maximum productivity. High values of knife speed lead to significant energy intensity of the process and overgrinding of raw materials. Therefore, the optimal range of knife speed is 55‒65 m/s.
Discussion and Conclusion. Effective grinding of raw materials is achieved through lower energy capacity of grinding process and absence of grate clogs resulted from separating particles from the surface of plants to be grinded.

Keywords: fibrous plant materials, grinding, cutting, grinder, specific energy capacity, blades linear velocity, fractional content the grinded product, low air pressure

Acknowledgments: The authors are grateful to the editors and reviewers for their attentive attitude to the article and for the indicated remarks, which improved its quality.

The authors declare no conflict of interest.

For citation: Braginets S.V., Bakhchevnikov O.N., Alferov A.S. Experimental Data of Grinding Dried Fibrous Plant Materials. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2021; 31(4):591-608. doi: https://doi.org/10.15507/2658-4123.031.202104.591-608

Contribution of the authors:
S. V. Braginets – scientific guidance, formulating the basic concept of research, general management of experimental research, conducting a critical analysis of the results and formulating conclusions.
O. N. Bakhchevnikov – analyzing literary data, preparing the original version of the text and finalizing the text.
A. S. Alferov – conducting experiments and processing their results.

All authors have read and approved the final manuscript.

Submitted 02.07.2021; approved after reviewing 05.08.2021;
accepted for publication 10.10.2021

 

REFERENCES

1. Demchenko V.N., Vertiy A.A. Increase of Efficiency Process of Grinding Down of Rough and Stem Forages. Naukoviy vіsnik Tavrіyskogo derzhavnogo agrotekhnologіchnogo unіversitetu = Scientific Bulletin of the Tavria State Agrotechnological University. 2011; (1-3):74-79. Available at: http://nauka.tsatu.edu.ua/e-journals-tdatu/pdf1t3/11DVNRSF.pdf (accessed 20.06.2021). (In Russ., abstract in Eng.)

2. Kostomakhin N.M., Kostomakhin M.N. [Traditional Technologies of Grass Meal Production]. Selskokhozyaystvennaya tekhnika: obsluzhivanie i remont = Agricultural Machinery: Maintenance and Repair. 2015; (4):14-28. Available at: https://elibrary.ru/item.asp?id=24258297& (accessed 20.06.2021). (In Russ.)

3. Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K., et al. Review: Biofuel Production from Plant and Algal Biomass. Alternativnaya energetika i ekologiya (ISJAEE) = Alternative Energy and Ecology (ISJAEE). 2019; (7-9):12-31. (In Russ., abstract in Eng.) doi: https://doi.org/10.15518/isjaee.2019.07-09.012-031

4. Mayer-Laigle C., Blanc N., Rajaonarivony R.K., Rouau X. Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour. Bioengineering. 2018; 5(2). (In Eng.) doi: https://doi.org/10.3390/bioengineering5020041

5. Sadov V.V., Sorokin S.A. Improving the Efficiency of Hammer Crusher with Vertical Shaft When Crushing Grain Components. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta = Bulletin of the Altai State Agrarian University. 2018; (11):86-92. Available at: http://www.asau.ru/vestnik/2018/11/086-092.pdf (accessed 20.06.2021). (In Russ., abstract in Eng.)

6. Smolensky A.V., Mikhaylov V.A., Alfyerov A.S., Byelyayev S.A. Research Workflow Hammer Crusher Vertical Shaft. Tekhnika v selskom khozyaystve = Machinery in Agriculture. 2012; (5):20-21. Available at: https://www.elibrary.ru/item.asp?id=20344403 (accessed 20.06.2021). (In Russ., abstract in Eng.)

7. Gulevsky V.A., Vertij A.A. Mathematical Modeling of Forage Cutter Operation. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta = Voronezh State Agrarian University Bulletin. 2018; (3):120-128. (In Russ., abstract in Eng.) doi: https://doi.org/10.17238/issn2071-2243.2018.3.120

8. Ghorbani Z., Masoumi A.A., Hemmat A. Specific Energy Consumption for Reducing the Size of Alfalfa Chops Using a Hammer Mill. Biosystems Engineering. 2010; 105(1):34-40. (In Eng.) doi: https://doi.org/10.1016/j.biosystemseng.2009.09.006

9. Tumuluru J.S., Tabil L.G., Song Y., et al. Grinding Energy and Physical Properties of Chopped and Hammer-Milled Barley, Wheat, Oat, and Canola Straws. Biomass and Bioenergy. 2014; 60:58-67. (In Eng.) doi: https://doi.org/10.1016/j.biombioe.2013.10.011

10. Savinyh P.A., Sychugov Y.V., Kazakov V.A., Ziganshin B.G. Development and Research of a Machine for Air Cleaning of Grass and Grain Seeds. Vestnik Kazanskogo gosudarstvennogo agrarnogo universiteta = Vestnik of Kazan State Agrarian University. 2021; 16(1):84-89. (In Russ., abstract in Eng.) doi: https://doi.org/10.12737/2073-0462-2021-84-89

11. Moiceanu G., Paraschiv G., Voicu Gh., et al. Energy Consumption at Size Reduction of Lignocellulose Biomass for Bioenergy. Sustainability. 2019; 11(9). (In Eng.) doi: https://doi.org/10.3390/su11092477

12. Mani S., Tabil L.G., Sokhansanj S. Grinding Performance and Physical Properties of Wheat and Barley Straws, Corn Stover and Switchgrass. Biomass and Bioenergy. 2004; 27(4):339-352. (In Eng.) doi: https://doi.org/10.1016/j.biombioe.2004.03.007

13. Igathinathane C., Womac A.R., Sokhansanj S., Narayand S. Size Reduction of High- and Low-Moisture Corn Stalks by Linear Knife Grid System. Biomass and Bioenergy. 2009; 33(4):547-557. (In Eng.) doi: https://doi.org/10.1016/j.biombioe.2008.09.004

14. Ghorbani Z., Hemmat A., Masoumi A.A. Physical and Mechanical Properties of Alfalfa Grind as Affected by Particle Size and Moisture Content. Journal of Agricultural Science and Technology. 2012; 14(1):65-76. Available at: https://www.researchgate.net/publication/265877094_Physical_and_Mechanical_Properties_of_Alfalfa_Grind_as_Affected_by_Particle_Size_and_Moisture_Content (accessed 20.06.2021). (In Eng.)

15. Volvak S.F., Bakharev D.N., Vertiy A.A. Theoretical Studies of the Shredder Stalked Feed Is Pivotally Suspended Combined with Knives. Innovatsii v APK: problemy i perspektivy = Innovations in Agricultural Complex: Problems and Perspectives. 2016; (3):24-34. Available at: http://bsaa.edu.ru/InfResource/library/Journal_3_2016.pdf#page=25 (accessed 20.06.2021). (In Russ., abstract in Eng.)

16. Ghorbani Z., Masoumi A.A., Hemmat A., Seifi M.R. Prediction of Specific Energy Consumption in Milling Process Using Some Physical and Mechanical Properties of Alfalfa Grind. Australian Journal of Crop Science. 2013; 7(10):1449-1455. Available at: http://www.cropj.com/ghorbani_7_10_2013_1449_1455.pdf (accessed 20.06.2021). (In Eng.)

17. Bulatov S.Iu. Increase of Efficiency of Preparation of Feed by Improving the Design and Process of Feeding Machines. Permskiy agrarnyy vestnik = Perm Agrarian Journal. 2017; (1):55-64. Available at: http://agrovest.psaa.ru/?smd_process_download=1&download_id=4253#page=56 (accessed 20.06.2021). (In Russ., abstract in Eng.)

18. Abilzhanov D.T., Abilzhanuly T., Gol’tyapin V.Ya., Orazov B.A. Substantiation of Diameter of Separating Sieve Holes for Leafy Part of Grasses. Tekhnika i oborudovanie dlya sela = Machinery and Equipment for Rural Area. 2017; (8):24-27. Available at: https://rosinformagrotech.ru/data/tos/arkhiv-zhurnala-besplatnyj-dostup/send/56-arkhiv-zhurnala-za-2017/445-tekhnika-i-oborudovanie-dlya-sela-avgust-8-242-2017-g (accessed 20.06.2021). (In Russ., abstract in Eng.)

19. Abilzhanuly T., Abilzhanov D.T. Determination of the Rotation Speed of Chopped Hay on the Surface of the Separator Sieve of the Leaf Part of Herbs. Traktory i selkhozmashiny = Tractors and Agricultural Machinery. 2020; (4):53-57. Available at: https://tismash.mospolytech.ru/upload/files/tismash/Тракторы и сельхозмашины №4 2020.pdf (accessed 20.06.2021). (In Russ., abstract in Eng.)

20. Volʼvak S.F., Bakharev D.N., Vertii A.A., Korchagina E.E. Theoretical Basis of Costs for Power Feed Grinding Stalk Shredders Is Pivotally Suspended Combined with Knives. Innovatsii v APK: problemy i perspektivy = Innovations in Agricultural Complex: Problems and Perspectives. 2017; (1):23-32. Available at: http://bsaa.edu.ru/InfResource/library/Journal%201(13)%202017.pdf#page=23 (accessed 20.06.2021). (In Russ., abstract in Eng.)

21. Volvak S.F., Shapovalov V.I. Analysis of Mathematical Model of Technological Process of Grinding of Stalked Feed. Izvestiya Mezhdunarodnoy akademii agrarnogo obrazovaniya = Proceedings of the International Academy of Agrarian Education. 2015; 1:90-93. Available at: https://maaorus.ru/assets/files/journals/izvestiya-maao-vypusk-25-tom-1.pdf#page=90 (accessed 20.06.2021). (In Russ., abstract in Eng.).

22. Gulevsky V.A., Vertij A.A. Improvements of Technology of Rough Stalk Forage Grinding by Chopper Equipped with Free-Swinging Combined Knives. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta = Voronezh State Agrarian University Bulletin. 2019; 12(1):73-81. (In Russ., abstract in Eng.) doi: https://doi.org/10.17238/issn2071-2243.2019.1.73

23. Vendin S.V., Samsonov V.A., Saenko Y.V., et al. Ustification of Knives’ Design Parameters at Product’s Flat Layer Cutting. Vestnik VNIMZh = Journal of VNIIMZH. 2019; (4):101-104. Available at: https://clck.ru/YjdcU (accessed 20.06.2021). (In Russ., abstract in Eng.)

24. Bestaev L.Z. [Comprehensive Evaluation of Quality Indicators of Stalk Fodder Chopping]. Innovatsii v selskom khozyaystve = Innovations in Agriculture. 2014; (2):49-53. Available at: https://journal.viesh.ru/wp-content/uploads/2018/04/insel7.pdf (accessed 20.06.2021). (In Russ., abstract in Eng.)

25. Abilzhanov D.T., Umetalieva Ch.T., Abilzhanuly T. Determination of Speed and Acceleration of the Separator Sieve of the Finely Sheet Part of the Herbs. Vestnik Kyrgyzsko-Rossiyskogo Slavyanskogo universiteta = Vestnik KRSU. 2019; 19(12):72-76. Available at: http://vestnik.krsu.edu.kg/archive/70/2858 (In Russ., abstract in Eng.)

26. Chevanan N., Womaca A.R., Bitraa V.S.P., et al. Bulk Density and Compaction Behavior of Knife Mill Chopped Switchgrass, Wheat Straw, and Corn Stover. Bioresource Technology. 2010; 101(1):207-214. (In Eng.) doi: https://doi.org/10.1016/j.biortech.2009.07.083

27. Dowgiallo A. Cutting Force of Fibrous Materials. Journal of Food Engineering. 2005; 66(1):57-61. (In Eng.) doi: https://doi.org/10.1016/j.jfoodeng.2004.02.034

28. Tabil Jr. L.G., Sokhansanj S. Bulk Properties of Alfalfa Grind in Relation to Its Compaction Characteristics. Applied Engineering in Agriculture. 1997; 13(4):499-505. Available at: https://www.academia.edu/download/32827663/97.001.pdf (accessed 20.06.2021). (In Eng.)

29. Ghorbani Z., Masoumi A.A., Hemmat A., et al. Principal Component Modeling of Energy Consumption and Some Physical-Mechanical Properties of Alfalfa Grind. Australian Journal of Crop Science. 2011; 5(8):932-938. Available at: http://www.cropj.com/ghorbani_5_8_2011_932_938.pdf (accessed 20.06.2021). (In Eng.)

30. Pakhomov V.I., Braginyets S.V., Bakhchyevnikov O.N., Alfyerov A.S. [Shredder of Fibrous Plant Materials]. Patent 205,978 Russian Federation. 2021 August 13. 12 p. Available at: https://www.elibrary.ru/item.asp?id=46472232 (accessed 20.06.2021). (In Russ.)

31. Gryazyeva T.V., Dyerova T.G., Ignatyev S.A., et al. [Lucerne Variegated “ Golubka”]. Patent 10,598 Russian Federation. 2019 July 23. Available at: https://www.elibrary.ru/item.asp?id=44119477 (accessed 20.06.2021). (In Russ.)

32. Ignatiev S.A., Gryazeva T.V., Metlina G.V., Ignatieva N.G. The Promising Variety of Alfalfa (Medicago Polymorpha) “Golubka”. Zernovoe khozyaystvo Rossii = Grain Economy of Russia. 2018; (1):20-24. (In Russ., abstract in Eng.) doi: doi: https://doi.org/10.31367/2079-8725-2018-55-1-20-23

 

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla