PDF To download article.

UDK 66.011:631.8

DOI: 10.15507/2658-4123.030.202001.092-110

 

Energy Efficiency of Pretreatment of Digester Synthetic Substrate in a Vortex Layer Apparatus

 

Andrey A. Kovalev
Senior Researcher of Laboratory of Bioenergy and Supercritical Technologies, Federal Scientific Agroengineering Center VIM (5, 1st Institutskiy Proyezd, Moscow 109428, Russia), Ph.D. (Engineering), Researcher ID: F-7045-2017, ORCID: https://orcid.org/0000-0002-1983-3454, Scopus ID: 57205285134, This email address is being protected from spambots. You need JavaScript enabled to view it.

Dmitriy A. Kovalev
Senior Researcher of Laboratory Director of Bioenergy and Supercritical Technologies, Federal Scientific Agroengineering Center VIM (5, 1st Institutskiy Proyezd, Moscow 109428, Russia), Ph.D. (Engineering), Researcher ID: K-4810-2015, ORCID: https://orcid.org/0000-0002-3603-3686, This email address is being protected from spambots. You need JavaScript enabled to view it.

Victor S. Grigoriev
Chief Researcher of Laboratory Director of Bioenergy and Supercritical Technologies, Federal Scientific Agroengineering Center VIM (5, 1st Institutskiy Proyezd, Moscow 109428, Russia), D.Sc. (Engineering), Researcher ID: B-4331-2019, ORCID: https://orcid.org/0000-0001-6555-1864, This email address is being protected from spambots. You need JavaScript enabled to view it.

Introduction. Processing organic waste to reduce the anthropogenic impact on the environment remains an urgent task, one of the ways to solve which is the use of methods for bioconversion of organic matter of organic waste to produce gaseous energy carrier and high-quality organic fertilizers. One of the most important stages of anaerobic processing of organic waste in bioreactors is the stage of preliminary preparation of waste for fermentation, which can be carried out by a number of methods. However, the technical literature does not pay enough attention to the use of devices with a vortex layer for the preliminary processing of substrates. The aim of the work is to determine the energy efficiency of the organic waste pretreatment process in the vortex layer apparatus before anaerobic digestion.
Materials and Methods. An experimental installation was developed to study the process of organic waste pretreatment. A mixture of organic fraction of municipal solid waste and tap water in the ratio of 300 g/l served as a substrate for treatment in the vortex layer apparatus.
Results. The calculations confirmed that the condition for energy efficiency of processing substrate pretreatment of methane is met, despite the additional cost of electrical energy during the integration of this stage in the system of anaerobic processing.
Discussion and Conclusion. Integration of the process of organic waste pretreatment in the vortex layer apparatus before fermentation in anaerobic bioreactors into the system of anaerobic treatment of organic waste can improve both the energy efficiency of the system and the level of anaerobic decomposition of organic matter of waste. The specific amount of biogas energy produced in the digestion process in an anaerobic bioreactor with pretreatment of the substrate in the apparatus of the vortex layer fully compensates the energy cost of pre-treatment of the substrate in the vortex layer apparatus. The practical significance of the work is confirmed by an increase in the specific yield of commercial energy by 70% compared to anaerobic treatment in traditional methane tanks.

Keywords: anaerobic treatment, vortex layer apparatus, energy efficiency, bioconversion of organic waste, pretreatment of organic waste

Funding: The publication was prepared with the financial support of the Russian Foundation for Basic Research, research project No. 18-29-25042.

For citation: Kovalev A.A., Kovalev D.A., Grigoriev V.S. Energy Efficiency of Pretreatment of Digester Synthetic Substrate in a Vortex Layer Apparatus. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2020; 30(1):92-110. DOI: https://doi.org/10.15507/2658-4123.030.202001.092-110

Contribution of the authors: A. A. Kovalev – analysis of literary sources, development of the experimental unit, calculation of energy efficiency, writing the draft; D. A. Kovalev – scientific guidance, problem statement, search and analysis of literary sources, development of the experimental unit, writing the draft; V. S. Grigoriev – search and analysis of literary sources, editing and revision of the text.

All authors have read and approved the final manuscript.

Received 02.09.2019; revised 16.10.2019; published online 31.03.2020

 

REFERENCES

1. Briquette Based on Pressed Lignocellulose Body Saturated with Liquid Fuel: Patent 2507241 Russian Federation. No. 2012108893/04; appl. 07.03.2012; publ. 20.02.2014. Bulletin No. 5. 11 p. Available at: http://www.freepatent.ru/images/patents/505/2507241/patent-2507241.pdf (accessed 20.02.2020). (In Russ.)

2. Method of Briquetting Animal and Poultry Waste and Device for Its Implementation: Patent 2507242 Russian Federation. No. 2012146319/04; appl. 30.10.2012; publ. 20.02.2014. Bulletin No. 5. 6 p. Available at: http://www.freepatent.ru/images/patents/505/2507242/patent-2507242.pdf (accessed 20.02.2020). (In Russ.)

3. Sommer P., Georgieva T., Ahring B.K. Potential for Using Thermophilic Anaerobic Bacteria for Bioethanol Production from Hemicellulose. Biochemical Society Transactions. 2004; 32(2):283-289. (In Eng.) DOI: https://doi.org/10.1042/bst0320283

4. Senko O.V., Gladchenko M.A., Lyagin I.V., et al. Biomass Transformation of Phototrophic Microorganisms to Methane. Alternativnaya energetika i ekologiya = International Journal of Alternative Energy and Ecology. 2012; (3):89-94. Available at: https://portlandpress.com/biochemsoctrans/article-abstract/32/2/283/63941/Potential-for-using-thermophilic-anaerobic?redirectedFrom=fulltext (accessed 20.02.2020). (In Russ.)

5. Kevbrina M.V., Gazizova N.G., Korobtsova V.G. Comparison of Different Methods of Sewage Sludge Pretreatment for Methane Digestion Intensification. Vodoochistka = Water Purification. 2013; (1):22-28. (In Russ.)

6. Production of Pellets or Briquettes: Patent 2518068 Russian Federation. No. 2011129312/04; appl. 05.10.2009; publ. 20.01.2013. Bulletin No. 16. 18 p. Available at: http://www.freepatent.ru/images/img_patents/2/2518/2518068/patent-2518068.pdf (accessed 20.02.2020). (In Russ.)

7. Kuznetsov B.N. Urgent Directions of Chemical Processing of Renewable Plant Biomass. Khimiya v interesakh ustoychivogo razvitiya = Chemistry for Sustainable Development. 2011; 19(1):77-85. Available at: https://www.sibran.ru/upload/iblock/20e/20e075ccdd1508ec3ef2795a6adb74ae.pdf (accessed 20.02.2020). (In Russ.)

8. Sergeeva Ya.E., Galanina L.A., Andrianova D.A., et al. Lipids of Filamentous Fungi as a Material for Producing Biodiesel Fuel. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology. 2008; 44(5):576-581. Available at: http://naukarus.com/lipidy-mitselialnyh-gribov-kak-osnova-dlya-polucheniya-biodizelnogo-topliva (accessed 20.02.2020). (In Russ.)

9. Sister V.G., Ivannikova E.M., Yamchuk A.I. Technology for Biodiesel Production. Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI = MGTU MAMI Bulletin. 2013; 2(3):109-112. Available at: https://cyberleninka.ru/article/v/tehnologii-polucheniya-biodizelnogo-topliva (accessed 20.02.2020). (In Russ.)

10. Gumerov F.M., Gabitov F.R., Gazizov R.A., et al. Future Trends of Sub- and Supercritical Fluids Application in Biodiezel Fuel Production. Sverkhkriticheskie flyuidy: Teoriya i praktika = Supercritical Fluids: Theory and Practice. 2006; 1(1):66-76. Available at: https://www.researchgate.net/publication/274391968_Future_Trends_of_Sub-_and_Supercritical_Fluids_Application_in_Biodiezel_Fuel_Production (accessed 20.02.2020). (In Russ.)

11. Kalyuzhnyi S.V., Gladchenko M.A., Sklyar V.I., et al. The UASB Treatment of Winery Wastewater under Submesophilic and Psychrophilic Conditions. Environmental Technology. 2000; 21:919-925. Available at: http://www.enzyme.chem.msu.ru/ekbio/article/ET_2000_21.pdf (accessed 20.02.2020). (In Russ.)

12. Sklyar V.I., Epov A.N., Gladchenko M.A., et al. Combined Biologic (Anaerobic-Aerobic) and Chemical Treatment of Starch Industry Wastewater. Applied Biochemistry and Biotechnology. 2003; 109(1-3):253-262. Available at: https://istina.cemi-ras.ru/publications/article/1671198/ (accessed 20.02.2020). (In Eng.)

13. Kalyuzhnyy S.V., Gladchenko M.A., Starostina Ye.A., et al. Combined Biological and Chemical Wastewater Treatment of Bakery Yeast Production. Proizvodstvo spirta i likerovodochnykh izdeliy = Manufacture of Alcohol and Liquor Products. 2004; (3):10-14. Available at: http://www.enzyme.chem.msu.ru/ekbio/article/Vodka.pdf (accessed 20.02.2020). (In Russ.)

14. Varfolomeev S.D., Kalyuzhnyy S.V., Medman D.Ya. Chemical Principles of the Biotechnology of the Preparation of Fuel. Uspekhi khimii = Russian Chemical Reviews. 1988; 57(7):1201-1231. (In Russ.) DOI: https://doi.org/10.1070/RC1988v057n07ABEH003383

15. Varfolomeev S.D., Efremenko E.N., Krylova L.P. Biofuels. Uspekhi khimii = Russian Chemical Reviews. 2010; 79(6):491-509. (In Russ.) DOI: https://doi.org/10.1070/RC2010v079n06ABEH004138

16. Khamidov M.G., Streltsov S.A., Danilovich D.A. Waste at the Service of the City Energy. Kommunalnyy kompleks Rossii = Communal Complex of Russia. 2009; (2):56-58. Available at: http://gkhprofi. ru/othody-na-sluzhbe-energetiki-goroda/ (accessed 20.02.2020). (In Russ.)

17. Tsavkelova E.A., Netrusov A.I. Biogas Production from Cellulose-Containing Substrates: A Review. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology. 2012; 48(5):1-15. (In Russ.) DOI: https://doi.org/10.1134/S0003683812050134

18. Appels L., Baeyens J., Degrève J., et al. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Progress in Energy and Combustion Science. 34(6):755-781. (In Eng.) DOI: https://doi.org/10.1016/j.pecs.2008.06.002

19. Lu J. Optimization of Anaerobic Digestion of Sewage Sludge Using Thermophilic Anaerobic Pre-Treatment. Lyngby: Technical University of Denmark; 2006. 60 p. Available at: https://backend.orbit.dtu.dk/ws/portalfiles/portal/4692519/Thesis.pdf (accessed 20.02.2020). (In Eng.)

20. Zhang D.Q., Tan S.K., Gersberg R.M. Municipal Solid Waste Management in China: Status, Problems and Challenges. Journal of Environmental Management. 2010; 91(8):1623-1633. (In Eng.) DOI: https://doi.org/10.1016/j.jenvman.2010.03.012

21. Walley P. Optimizing Thermal Hydrolysis for Reliable High Digester Solids: Loading and Performance. In: Proceedings of the 12th European Biosolids and Organic Resources Conference. Manchester: Aqua Enviro; 2007. Available at: https://www.environmental-expert.com/articles/optimising-thermal-hydrolysis-for-reliable-high-digester-solids-loading-and-performance-26250 (accessed 20.02.2020). (In Eng.)

22. Khramenkov S.V., Pakhomov A.N., Streltsov S.A., et al. Improving the Efficiency of Wastewater Sludge Pretreatment by High Temperature Hydrolysis before Digestion. Vodosnabzhenie i sanitarnaya tekhnika = Water Supply and Sanitary Technique. 2012; (10):55-60. Available at: http://docplayer.ru/69901569-Povyshenie-effektivnosti-obrabotki-osadka-stochnyh-vod-s-pomoshchyu-vysokotemperaturnogo-gidroliza-pered-sbrazhivaniem.html (accessed 20.02.2020). (In Russ.)

23. Haug R.T., Stuckey D.C., Gossett J.M., et al. Effect of Thermal Pretreatment on Digestibility and Dewaterability of Organic Sludges. Journal of the Water Pollution Control Federation. 1978; 50(1):73-85. Available at: https://www.jstor.org/stable/25039508?seq=1#page_scan_tab_contents (accessed 20.02.2020). (In Eng.)

24. Tiehm A., Nickel K., Zellhorn M., et al. Ultrasonic Waste Activated Sludge Disintegration for Improving Anaerobic Stabilization. Water Research. 2001; 35(8):2003-2009. (In Eng.) DOI: https://doi.org/10.1016/S0043-1354(00)00468-1

25. Henze M., Miadenovski C. Hydrolysis of Particulate Substrate by Activated Sludge under Aerobic, Anoxic and Anaerobic Conditions. Water Research. 1991; 25(1):61-64. (In Eng.) DOI: https://doi.org/10.1016/0043-1354(91)90099-C

26. Messenger J.R., Villiers H.A., Ekama G.A. Oxygen Utilization Rate as a Control Parameter for the Aerobic Stage in Dual Digestion Water Science and Technology. 1990; 22(12):217-227. (In Eng.) DOI: https://doi.org/10.2166/wst.1990.0116

27. McIntosh K.B., Oleszkiewicz J.A. Volatile Fatty Acid Production in Aerobic Thermophilic Pre-Treatment of Primary Sludge. Water Science and Technology. 1997; 36(11):189-196. (In Eng.) DOI: https://doi.org/10.1016/S0273-1223(97)00682-3

28. Gyunter L.I., Koltsova Z.M. Trends in Methane Disposal of Organic Waste. Vodosnabzhenie i sanitarnaya tekhnika = Water Supply and Sanitary Technique. 1993; (9):13-15. (In Russ.)

29. Litti Yu., Kovalev D., Kovalev A., et al. Increasing the Efficiency of Organic Waste Conversion into Biogas by Mechanical Pretreatment in an Electromagnetic Mill. Journal of Physics: Conference Series. 2018; 1111(1):1-8. (In Eng.) DOI: https://doi.org/10.1088/1742-6596/1111/1/012013

 

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

Joomla templates by a4joomla