UDK 631.371:574
DOI: 10.15507/2658-4123.029.201903.366-382
Energy and Environment Assessment of Agricultural Application of Power Generating Sources
Aleksandr Yu. Briukhanov
Chief Researcher, Institute for Engineering and Environmental Problems in Agricultural Production, Branch of Federal Scientific Agroengineering Center VIM (3 Filtrovskoye Shosse, Tyarlevo, Saint Petersburg 196625, Russia), D.Sc. (Engineering), Professor of RAS, ResearcherID: B-7550-2018, ORCID: https://orcid.org/0000-0003-4963-3821, This email address is being protected from spambots. You need JavaScript enabled to view it.
Igor A. Subbotin
Researcher, Institute for Engineering and Environmental Problems in Agricultural Production, Branch of Federal Scientific Agroengineering Center VIM (3 Filtrovskoye Shosse, Tyarlevo, Saint Petersburg 196625, Russia), ResearcherID: L-6130-2015, ORCID: https://orcid.org/0000-0002-6189-9385, This email address is being protected from spambots. You need JavaScript enabled to view it.
Evgeniy V. Timofeev
Senior Researcher, Institute for Engineering and Environmental Problems in Agricultural Production, Branch of Federal Scientific Agroengineering Center VIM (3 Filtrovskoye Shosse, Tyarlevo, Saint Petersburg 196625, Russia), Ph.D. (Engineering), ResearcherID: C-2502-2019, ORCID: https://orcid.org/0000-0002-9022-0183, This email address is being protected from spambots. You need JavaScript enabled to view it.
Andrey F. Erk
Leading Researcher, Institute for Engineering and Environmental Problems in Agricultural Production, Branch of Federal Scientific Agroengineering Center VIM (3 Filtrovskoye Shosse, Tyarlevo, Saint Petersburg 196625, Russia), Ph.D. (Engineering), ResearcherID: C-2518-2019, ORCID: https://orcid.org/0000-0002-4394-4322, This email address is being protected from spambots. You need JavaScript enabled to view it.
Introduction. Recently the issue of decentralised (autonomous) power supply of certain rural consumers has been increasingly considered. Various small power generators using local and renewable energy sources can be applied for this purpose. So a consumer must choose the best-suited energy-generating source.
Materials and Methods.The findings of energy audits, which were conducted by the Institute from 2003 to the present day, were used to evaluate energy consumers and determine operation modes of equipment and load schedules. Complex index of the negative impact of heat and electricity generation on the environment was determined using the Spesivtsev ‒ Drozdov method of logical-linguistic modelling based on expert assessments.
Results. Energy sources can be divided into traditional (diesel generators and gas generator plants) or renewable ones (wind turbines, solar collectors, mini hydro systems). Energy source is chosen either with the help of the economic criterion, being the cost of one k·Wh of energy or the criterion of environmental compatibility, or total specific emission of pollutants from energy generation at local generating sources (g/k·Wh). Here, not only the quantity of emissions, but also the harmful effect on the environment is considered.
Discussion and Conclusion. For the choice of energy supply sources, the coefficient of energy-ecological compatibility is proposed, being the product of the cost of one k·Wh of energy generated and specific emission of pollutants. The optimal value of this factor is the smallest, which accounts for both economic and environmental feasibility of energy generating sources.
Keywords: power supply, autonomous power supply, generating source, energy and environment index
For citation: Subbotin I.A., Briukhanov A.Yu., Timofeev E.V., Erk A.F. Energy and Environment Assessment of Agricultural Application of Power Generating Sources. Inzhenernyye tekhnologii i sistemy = Engineering Technologies and Systems. 2019; 29(3):366-382. DOI: https://doi.org/10.15507/2658-4123.029.201903.366-382
Contribution of the authors: A. Yu. Briukhanov – academic supervision, formulation of the problem and the paper concept; I. A. Subbotin – methods, results and discussion; E. V. Timofeev – introduction and literature review; A. F. Erk – methods, results and discussion, conclusions.
All authors have read and approved the final manuscript.
Received 22.02.2019; revised 20.03.2019; published online 30.09.2019
REFERENCES
1. Timofeev E.V., Erk A.F., Sudachenko V.N., Razmuk V.A. Optimization of Power Supply Schemes of Modern Agricultural Enterprises. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanised Crop and Livestock Production. 2018; (1):63-71. (In Russ.) DOI: https://doi.org/10.24411/0131-5226-2018-10008
2. Sudachenko V.N., Erk А.F., Timofeev E.V. Selection of Power Supply Options for Agricultural Production Facilities by Economic Criteria. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanised Crop and Livestock Production. 2017; (92):43-48. Available at: https://cyberleninka.ru/ article/n/vybor-varianta-energosnabzheniya-obektov-selhozproizvodstva-po-ekonomicheskim-kriteriyam (accessed 22.05.2019). (In Russ.)
3. Brovtsin V.N., Erk А.F., Bychkova О.V. Analysis of Energy Efficiency of Dairy Farms. Mekhanizaciya i ehlektrifikaciya selskogo hozyajstva = Mechanisation and Electrification of Agriculture. 2014; (5):22-24. Available at: https://cyberleninka.ru/article/n/analiz-energoeffektivnosti-predpriyatiy-molochnogo- napravleniya (accessed 22.05.2019). (In Russ.)
4. Erk А.F., Sudachenko V.N., Butrimova E.I. Creation of Demonstration Zones of High Energy Performance of Agrciultural Enterprises in Leningrad Region. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanised Crop and Livestock Production. 2016; (88):46-53. Available at: https:// cyberleninka.ru/article/n/printsipy-sozdaniya-demonstratsionnoy-zony-vysokoy-energoeffektivnosti-selskohozyaystvennyh- predpriyatiy-v-leningradskoy-oblasti (accessed 22.05.2019). (In Russ.)
5. Lu X., Zhou K., Zhang X. A Systematic Review of Supply and Demand Side Optimal Load Scheduling in a Smart Grid Environment. Journal of Cleaner Production. 2018; 203:757-768. (In Eng.) DOI: https://doi.org/10.1016/j.jclepro.2018.08.301
6. Ghisellini P., Setti M., Ulgiati S. Energy and Land Use in Worldwide Agriculture: An Application of Life Cycle Energy and Cluster Analysis. Environment Development and Sustainability. 2016; 18(3):799-837. (In Eng.) DOI: https://doi.org/10.1007/s10668-015-9678-2
7. Naz M.N., Naeem N., Iqbal M., Imran N. Economically Efficient and Environment Friendly Energy Management in Rural Area. Journal Of Renewable And Sustainable Energy. 2017; 9(1):800-833. (In Eng.) DOI: https://doi.org/10.1063/1.4973713
8. Bieber N., Ker J.H., Wang X.N., et al. Sustainable Planning of the Energy-Water-Food Nexus Using Decision Making Tools. Energy Policy. 2018; 113:584-607. (In Eng.) DOI: https:// doi.org/10.1016/j.enpol.2017.11.037
9. Zhonglin Ch., Guangchao G., Quanyuan J., Guerrero J.M. Energy Management of Chp-Based Microgrid with Thermal Storage for Reducing Wind Curtailment. Journal of Energy Engineering. 2018; 144(6):700-723. (In Eng.) DOI: https://doi.org/10.1061/(ASCE)EY.1943-7897.0000583
10. Ardebili S., Khademalrasoul A. An Analysis of Liquid-Biofuel Production Potential from Agricultural Residues and Animal Fat (Case Study: Khuzestan Province). Journal of Cleaner Production. 2018; 204:819-831 (In Eng.) DOI: https://doi.org/10.1016/j.jclepro.2018.09.031
11. Stich J., Ramachandran S., Hamacher T., Stimming U. Techno-Economic Estimation of the Power Generation Potential from Biomass Residues in Southeast Asia. Energy. 2017; 135:930-942. (In Eng.) DOI: https://doi.org/10.1016/j.energy.2017.06.162
12. Malladi K.T., Sowlati T. Biomass Logistics: A Review of Important Features, Optimization Modeling and the New Trends. Renewable & Sustainable Energy Reviews. 2018; 94:587-599. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2018.06.052
13. Xu J.Z., Assenova A., Erokhin V. Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan. Sustainability. 2018; 10(9):3315. (In Eng.) DOI: https://doi.org/10.3390/su10093315
14. Chung M., Shin K.Y., Jeoune D.S. Economic Evaluation of Renewable Energy Systems for the Optimal Planning and Design in Korea. Journal of Sustainable Development of Energy Water and Environment Systems. 2018; 6(4):725-741. (In Eng.) DOI: https://doi.org/10.13044/j.sdewes.d6.0216
15. Ivanov G.A., Bobyl A.V., Ershenko E.M., Terukov E.I. Operation of an Autonomous Hybrid Solar Power Plant in the Northwestern Federal District of Russia. Zhurnal tehnicheskoy fiziki = The Russian Journal of Applied Physics. 2014; 84(10):63-67. Available at: https://docplayer.ru/53559049-Osobennosti-ekspluatacii-solnechnoy-avtonomnoy-gibridnoy-energoustanovki-v-usloviyah-severozapadnogo- federalnogo-okruga.html (accessed 22.05.2019). (In Russ.)
16. Bobyl A.V., Kiseleva S.V., Kochakov V.D., et al. Engineering and Economic Features of Grid Solar Energy in Russia Technical Physics. Zhurnal tehnicheskoy fiziki = The Russian Journal of Applied Physics. 2014; 84(4):85-92. Available at: http://journals.ioffe.ru/articles/viewPDF/27207 (accessed 22.05.2019). (In Russ.)
17. Ablayev G.M., Abramov A.S., Nyapshaev I.A., et al. Flexible Photovoltaic Modules Based on Amorphous Hydrogenated Silicon. Semiconductors. 2015; 49(5):679-682. Available at: https://link.springer.com/ article/10.1134/S1063782615050024 (accessed 22.05.2019). (In Eng.)
18. Pfeifer A., Dominkovic D., Cosic B., Duic N. Economic Feasibility of CHP Facilities Fueled by Biomass from Unused Agriculture Land: Case of Croatia. Energy Conversion and Management. 2016; 125:222-229. (In Eng.) DOI: https://doi.org/10.1016/j.enconman.2016.04.090
19. Sudachenko V.N., Timofeev E.V., Timofeev E.V. Justification Criterion of Economic Efficiency of Joint Use of Traditional and Renewable Energy Sources. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanised Crop and Livestock Production. 2017; (92):35-43. Available at: https://cyberleninka.ru/ article/n/obosnovanie-kriteriya-ekonomicheskoy-effektivnosti-sovmestnogo-ispolzovaniya-traditsionnyh-i-vozobnovlyaemyh- energoistochnikov (accessed 22.05.2019). (In Russ.)
20. Erk А.F., Sudachenko V.N., Rasmuk V.A., Kovaleva О.V. Results of Energy Survey of Agricultural Enterprises. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produkcii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanised Crop and Livestock Production. 2014; (85):100-105. Available at: https://cyberleninka.ru/article/n/rezultaty-energeticheskogo-obsledovaniya-selskohozyaystvennyh-predpriyatiy (accessed 22.05.2019). (In Russ.)
21. Rakutko S.A., Markova A.E., Mishanov A.P., Rakutko E.N. Energy and Ecological Efficiency of Indoor Plant Lighting as a New Interdisciplinary Research Area. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produkcii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanised Crop and Livestock Production. 2016; (90):14-27. Available at: https://cyberleninka. ru/article/n/energoekologiya-svetokultury-novoe-mezhdistsiplinarnoe-nauchnoe-napravlenie (accessed 22.05.2019). (In Russ.)
22. Rakutko S.A., Brovtsin V.N., Mishanov A.P., et al. Assessment of Environmental Friendliness and Energy Efficiency of the Enterprise of Agro-Industrial Complex with the Help of a Hierarchical Model of an Artificial Bioenergy System. Regionalnaya ekologiya = Regional Ecology. 2015; (6):58-66. (In Russ.)
23. Shahsavari A., Akbari M. Potential of Solar Energy in Developing Countries for Reducing Energy- Related Emissions. Renewable & Sustainable Energy Reviews. 2018; 90:275-291. (In Eng.) DOI: https://doi.org/10.1016/j.rser.2018.03.065
24. Dunnigan L., Morton B., Ashman P., et al. Emission Characteristics of a Pyrolysis-Combustion System for the Co-Production of Biochar and Bioenergy from Agricultural Wastes. Waste Management. 2018; 77:59-66. (In Eng.) DOI: https://doi.org/10.1016/j.wasman.2018.05.004
25. MacNaughton P., Cao X., Buonocore J., et al. Energy Savings, Emission Reductions, and Health Co-Benefits of the Green Building Movement. Journal of Exposure Science and Environmental Epidemiology. 2018; 28(4):307-318. (In Eng.) DOI: https://doi.org/10.1038/s41370-017-0014-9
26. Carnevale C., Ferrari F., Guariso G., et al. Assessing the Economic and Environmental Sustainability of a Regional Air Quality Plan. Sustainability. 2018; 10(10):3568. (In Eng.) DOI: https://doi.org/10.3390/su10103568
27. Nastase G., Serban A., Nastase A., et al. Air Quality, Primary Air Pollutants and Ambient Concentrations Inventory for Romania. Atmospheric Environment. 2018; 184:292-303. (In Eng.) DOI: https://doi.org/10.1016/j.atmosenv.2018.04.034
Subbotin I.A. Improvement of Environmental Safety of Manure Utilisation Based on BAT Principles. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produkcii rastenievodstva i zhivotnovodstva = Technologies, Machines and Equipment for Mechanised Crop and Livestock Production. 2017; (92):186-192. Available at: https://cyberleninka.ru/article/n/povyshenie-ekologicheskoy-bezopasnosti- utilizatsii-navoza-na-osnove-printsipov-ndt (accessed 22.05.2019). (In Russ.)
This work is licensed under a Creative Commons Attribution 4.0 License.