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Abstract
Introduction. Recently, sandwich-structured composite materials based on honeycomb 
core and strong thin shells have become widespread. 
However, these materials are characterized by manufacturing and operational flaws such 
as “non-gluing” and “delamination” that is the breaking of the bonds between the shell and 
the honeycomb core that result in the deterioration in the mechanical, acoustic and thermal 
properties of the material.
Aim of the Study. The study is aimed at developing effective methods for detecting flaws 
in gluing shell with comb core in honeycomb polymer materials. 
Materials and Methods. The article describes a method for detecting these flaws using 
scanning thermography with a linear heat source, based on the estimation and subsequent 
analysis of the distribution of local temperature field gradients on the product surface. 
Results. The experiments were carried out on a model polymer specimen with an embed-
ded artificial flaw; there were shown the main sources of emerging noise, control errors, 
and the ways to reduce their influence; a numerical method for assessing the accuracy of 
the flaw measurement method was proposed. 
Discussion and Conclusion. Tests carried out on a control specimen showed that the pro-
portion of errors in measuring a defect does not exceed 12%.

Keywords: scanning thermography, non-destructive testing, composite materials, honey-
comb core, flaw detection, delamination

Conflict of interest: The authors declare no conflict of interest.

Funding: The study was supported by the grant of the Russian Science Foundation 
№ 20-19-00602 using the equipment of the Center for Collective Use of Derzhavin Tam-
bov State University and the Center for Collective Use “Robotics” of Tambov State Tech-
nical University.

ПРИБОРЫ И МЕТОДЫ 
ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ / 

INSTRUMENTS AND METHODS  
OF EXPERIMENTAL PHYSICS

https://doi.org/10.15507/2658-4123.034.202402.265-280
http://vestnik.mrsu.ru
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


266266

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ И СИСТЕМЫ  Том 34, № 2. 2024

Приборы и методы экспериментальной физики

For citation: Golovin D.Yu., Divin A.G., Samodurov A.A., Zaharov Yu.A., Tyurin A.I., 
Golovin Yu.I. Identification of Defects in Products Made from Honeycomb Composite 
Materials Using Infrared Scanning Thermography. Engineering Technologies and Sys-
tems. 2024;34(2):265‒280. https://doi.org/10.15507/2658-4123.034.202402.265-280

Идентификация дефектов изделий  
из сотовых композиционных материалов  
методом инфракрасной сканирующей 
термографии

Д. Ю. Головин 1, А. Г. Дивин 1, 2, А. А. Самодуров 1,  
Ю. А. Захаров 1, 2, А. И. Тюрин 1, Ю. И. Головин 1 
1 Тамбовский государственный университет  
имени Г. Р. Державина 
(г. Тамбов, Российская Федерация) 
2 Тамбовский государственный технический университет 
(г. Тамбов, Российская Федерация)
 nano@tsutmb.ru

Аннотация
Введение. В последнее время получили широкое распространение сендвич-структу-
рированные композиционные материалы на основе сотовых заполнителей в тонкой, 
но прочной оболочке.  К сожалению, для таких материалов характерно образование 
производственных и эксплуатационных дефектов типа «непроклей» и «отслоение», 
заключающихся в нарушении связей между обшивкой и сотовым заполнителем, при-
водящих к ухудшению механических, акустических и тепловых свойств материала. 
Цель исследования. Целью статьи является разработка эффективных методов обна-
ружения дефектов клеевого соединения обшивки с сотовым наполнителем сендвича. 
Материалы и методы. В работе описан способ обнаружения дефектов при помощи 
сканирующей термографии с линейным источником тепла, основанный на вычисле-
нии и последующем анализе распределения локальных градиентов температурного 
поля на поверхности изделия. 
Результаты исследования. Проведены эксперименты на модельном полимерном 
образце с заложенным искусственным дефектом, показаны основные источники 
возникающих шумов и ошибок контроля, способы снижения их влияния, предложен 
численный способ оценки точности метода определения дефекта. 
Обсуждение и заключение. Проведенные на контрольном образце испытания пока-
зали, что доля ошибок при определении дефекта не превышает 12 %.

Ключевые слова: инфракрасная термография, неразрушающий контроль, компози-
ционные материалы, сотовый заполнитель, дефектоскопия, дефект
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Introduction. The development of modern technology is impossible without the 
introduction of materials that meet the highest requirements for strength, rigidity and 
reliability. Such materials include composites with an internal honeycomb core and an 
external shell made of a polymer composite material glued to it. Honeycomb structures 
can be made from various types of metallic1 [1; 2] and non-metallic materials [3], such 
as aluminum alloy [5‒6], stainless steel [7; 8], Nomex [9; 10], craft paper [11; 12] and 
glass fiber [13; 14]. There are widely used honeycomb composites in which the filler 
(plastic polymer) is made of aramid paper impregnated with phenolic resins, resulting 
in the formation of a honeycomb hexagonal thin-walled structure.

Their superior physical, mechanical and other structural properties such as low density, 
corrosion resistance, fire resistance, good thermal insulation and high compressive strength, 
and good fatigue strength make aramid paper honeycomb composites the base material to make 
details for aerospace, automotive (race car), high-speed railway and shipbuilding industries, 
and for the parts of sport equipment and safety helmet. In the aircraft industry, honeycomb 
composites are used primarily for floors, doors, flaps, wing fairings, rudders, overhead stor-
age compartments, ceilings, sidewall panels, engine cowlings, spoilers, nacelles and fairings.

However, in manufacturing of the products from these materials and during their 
operation, there may be formed such flaws as “non-gluing” and “detachment” that is the 
breaking of bonds between the shell and honeycomb. These flaws reduce the strength 
and rigidity of materials that increases the risk of destruction of the product during its 
operation and makes the procedure for flaw detection of these materials in demand.

Currently, ultrasonic testing is used as the main method for detecting flaws in honey-
comb composites. However, the sandwich structures of these materials are characterized 
by rapid attenuation of ultrasonic waves with frequencies above 1 MHz, which signifi-
cantly complicates the use of traditional ultrasonic methods. Therefore, new ones are 
being actively developed, including vibrational acoustic-ultrasonic methods operating 
at a frequency of less than 100 kHz, and methods based on the use of phased arrays. 
In addition to ultrasonic testing methods, X-ray2, impedance methods and classical me-
thods of free vibrations (tapping) [15] are used.

Each of these methods has its own characteristics and it is advisable to use a set of 
methods for the reliable flaw detection. For example, to identify subsurface flaws such as 
shell “detachment” or “non-gluing”, it is advisable to use active scanning thermography 
methods, which have proven themselves to be universal, high-performance, safe, visual 
and easy to implement [16; 17]. These methods are based on the use of a heat source 
acting on the test object and further dynamic recording of the temperature field of the 
product surface. Anomalies in the distribution of the temperature field indicate a viola-
tion of the material structure, including the presence of the above-mentioned defects 
in it3. However, honeycomb composites, by definition, are inhomogeneous in structure 

1 Price T.L., Dalley G., McCullough P.C., Choquette L. Handbook: Manufacturing Advanced Com-
posite Components for Airframes. USA: Federal Aviation Administration, Office of Aviation Research; 
1997. 226 p. Available at: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/ADA325978.
xhtml (accessed 06.10.2023).

2 ASTM E2662-15. Standard Practice for Radiographic Examination of Flat Panel Composites and 
Sandwich Core Materials Used in Aerospace Applications. Book of Standards Volume: 03.04. 2015 June 1. 
6 p. https://doi.org/10.1520/E2662-15

3 Golovin D.Yu., Tyurin A.I., Samodurov A.A., Divin A.G., Golovin Yu.I. [Dynamic Thermographic Me-
thods of Non-Destructive Express Control]. Moscow: Technosphera; 2019. 214 p. (In Russ.) EDN: NATTIX

https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/ADA325978.xhtml
https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/ADA325978.xhtml
https://doi.org/10.1520/E2662-15
https://www.elibrary.ru/NATTIX
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and therefore the temperature field on their surface during active thermal control is also 
inhomogeneous. For this reason, it is necessary to develop more complex mathematical 
models, methods and algorithms that make it possible to reliably identify such flaws as 
“non-gluing” or “detachment” using primary data obtained in the experiment.

Literature Review. The active thermography method can be applied to a greater 
class of materials than many other traditional quality control methods, such as radiation 
testing, ultrasonic testing, eddy current testing, capillary testing, etc. [18‒20]. It can be 
applied to both metals and non-metals containing subsurface flaws such as cracks, fo-
reign inclusions, peeling, delamination, etc.

Due to the advantage of inspecting a large area in one test, the infrared thermog-
raphy is widely used for non-destructive testing of detachment flaws in honeycomb 
composites. Various sources of thermal excitation can be used depending on the types 
of flaws and types of materials. In solid polymer composite materials, the ultrasonic 
infrared thermography can be used [7], which makes it possible to determine the cha-
racteristics of small flaws, “closed” flaws, etc. [21]. To identify these flaws, the method 
of electric force thermography is also used [22]. The microwave thermography [8] has 
a good thermal effect on ceramic and wooden products. The eddy current thermography 
is used for metal products. Compared with other thermal excitation methods, the optical 
excitation is the simplest and most practical one. IR pulse thermography is a universal 
method for detecting flaws [10‒12]; however, it should be taken into account that when 
the heat source (for example, a quartz lamp) is turned off, the inevitable effects of infrared 
afterglow will influence the experimental results [11].

Depending on the geometric shape of the thermal influence zone of the test object, 
one can distinguish:

‒ point-scanning, when the heating of an object is limited to a circle-shaped area 
of a known diameter with uniform surface rating and simultaneous moving along the 
object surface at a given speed and along a given trajectory [23];

‒ linear scanning, which is heating an object along a segment of a given length during 
the object movement perpendicular to this segment at a given speed [24];

‒ continuous heating, when a large area of the test object is exposed to heat that 
ensures rapid testing.

The disadvantage of continuous heating is that it is difficult to ensure uniform hea-
ting all over the surface of the test object, especially if the latter has a curved surface. 
Spot heating with a laser makes it possible to examine the product curved surface, but 
the performance of this method leaves much to be desired.

A compromise is the linear scanning method, which provides high performance and 
enables to examine surfaces with one-dimensional curvature. However, for honeycomb 
composites, the development of algorithms for identifying defective regions with shell 
delamination remains relevant.

Materials and Methods. For the experiments, a rectangular specimen with dimen-
sions of (102×102×12) mm was used. The specimen imitated a fragment of a honeycomb 
panel and consisted of two parts: a polymer honeycomb core and a shell glued to it. 
The honeycomb core was made by photopolymer 3D printing from the photopolymer 
Anycubic 3D Printing UV Sensitive Resin Basic produced by Shenzhen Anycubic 
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Technology Co., Ltd (Shenzhen, China). The 3D printer Saturn 2, manufactured by 
Elegoo (Shenzhen, China), was used to print. This printer is equipped with an 8K UV 
display, which allows printing with a horizontal resolution of 28.5 microns. Vertical 
resolution was 1.25 microns.

The honeycomb core is a honeycomb structure with through hexagonal cells located 
periodically. The dimensions of the area with cells were (100×100) mm, along the perimeter 
of the area with cells there was a rim of 1 mm thick. The height of the filler was 10 mm. 
The distance between the parallel walls of one honeycomb was 4.8 mm, the wall thick-
ness was 0.2 mm. To simulate a delamination defect a rectangular recess with a size of 
(20.2×20.2) mm and a depth of 0.25 mm was made in the array of honeycomb filler cells. 
The indentation was built into the digital model before printing and was completed by the 
printer. The depth was checked using a Veeco NT 9080 profilometer and was 0.259 mm.

A fragment of fiberglass STEF GOST 12652‒74 with a thickness of 0.5 mm and 
dimensions of (102×102) mm was used as a shell. To increase the absorption and emis-
sion coefficients of the specimen surface and prevent it from being heated in depth by 
radiation, its surface was painted with the matte black paint “Monarca 21200 Black” 
sprayed from a spray can. The thickness of the paint layer was less than 0.02 mm.

To record thermal films, there was developed an installation consisting of a three-
coordinate portal-type base from a MP7 milling machine with numerical control manu-
factured by Purelogic (Russia, Voronezh).  A heater was attached to the machine portal. 
At the end of the machine table, there was a support for mounting an infrared (IR) camera 
(hereinafter referred to as a thermal imager), which allows recording the dynamics of 
changes in the temperature field.

The heater was made of the Thermika 1000 W 235 V 355/272 mm SK15 reflector IR 
lamp placed in the reflector housing. The lamp power consumption was 1 kW. The glass 
bulb of the lamp had the shape of a cylinder with a diameter of 11 mm with an emitting 
spiral length of 272 mm. The total length of the lamp was 355 mm. The reflector housing 
was made of a piece of aluminum profile ‒ a rectangular pipe measuring 40×20 mm, with 
a wall thickness of 1 mm, and a length of 355 mm corresponding to the overall length 
of the IR lamp. The housing had a 6 mm wide slot along its entire length. The housing 
was designed to distribute IR radiation from the lamp along the heating spot, which was 
a line located perpendicular to the direction of movement during scanning, provided for 
by the concept of active scanning thermography with a linear source.

For the installation there was used a COX CG640-G20 thermal imager manufactured 
by COX (South Korea, Seoul). The thermal imager used a ULIS detector ‒ an uncooled 
microbolometer matrix with a resolution of (640×480) pixels. The temperature sensitiv-
ity of the detector was below 50 mK, the perceived wavelength range of IR radiation 
was (8...14) microns.

When recording thermal films, the specimen was placed on the installation table. The 
distance from the heater housing to the specimen surface was 20 mm. The portal with 
a fixed heater moved relative to the specimen at a speed of 20 mm/s, ensuring heating 
of the specimen surface to no more than 80 °C. The thermal imager remained motion-
less. As a result, the records of sequences of thermograms with time stamps, hereinafter 
referred to as “thermal films”, were obtained. To work with recorded thermal films, we 
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used original software “Thermal Film Analyzer CRD” and several auxiliary utilities for 
working with data uploaded using the above application and other auxiliary functions. 
The developed software was written in the Processing language.

Results. For thermographic methods, the flaw is local heterogeneity of thermal 
physical characteristics. In the case of a honeycomb material, considering a flaw as 
inhomogeneity is complicated by the inhomogeneous structure of the material itself. In 
addition, the honeycombs have slightly different sizes and shapes, and therefore the heat 
removal from the heated surface layer may be uneven and irregular, and much lower 
than for a solid material. This is due to the fact that the entire volume of the material 
participates in heat removal from a solid specimen, whereas in the case of a material 
with a honeycomb core, heat is removed into the material mainly by thin honeycomb 
walls made of polymer and having low thermal conductivity. Figure 1 shows a fragment 
of a thermogram of a defect free region of a honeycomb composite material.

F i g.  1.  Thermogram of a composite material section with honeycomb core. “Honeycombs” are clearly 
visible, appearing due to heat leakage along the walls of the honeycomb deep into the filler

Source: Hereinafter in this article all figures were drawn up by the authors.

During the cooling of the shell in the areas above the honeycomb walls, the tempera-
ture at the beginning of the cooling process decreased faster than above the honeycomb 
centers that leads to the occurrence of a thermal pattern on its surface, reflecting the 
structure of the honeycomb filler. After some time, the temperature equalized and the 
honeycombs became invisible again.

The presence of a cell wall in contact with the housing manifested itself in the oc-
currence of a local temperature minimum. The “detachment” flaw is characterized by 
poorer (or even absent) contact between the honeycomb walls and the shell. Hence, 
the task of detecting a flaw can be considered as the task of searching for honeycombs 
under the top layer of material. Thus, when a flaw became visible, the development of 
a numerical criterion for its detection was reduced to the problem of feature engineering. 
Due to heat leakage into the walls of the honeycomb, there were lateral heat flows on the 
surface of the material, the magnitude of which at a point corresponds to the magnitude 
of the gradient. Accordingly, the temperature gradient on the surface in the defect free 
area should be higher than in the area over delamination.

To verify this assumption, there was selected a thermal film frame immediately fol-
lowing after the heater output of the flaw area. Using specialized software, the gradient 



271271

ENGINEERING TECHNOLOGIES AND SYSTEMSVol. 34, no. 2. 2024

Instruments and methods  of experimental physics

values in the frame were calculated. The gradient for each point was calculated on 
a circular area with a radius of 6 pixels. This radius was chosen so that the gradient 
calculation area corresponded to the size of the area of monotonic temperature change, 
which made it possible to estimate the temperature gradient created by heat leakage into 
the nearest wall. Since the gradient was proportional to this leakage, and the amount of 
leakage depended on the flaw presence, the gradient can be used to determine flaw in 
the area of a selected point. In this case, gradients along the x and y axes were calculated 
as the coefficient of linear regression of temperature on the corresponding coordinate. 
This approach suppresses the noise, since each coefficient results from processing many 
pixels. Using the linear regression coefficients of temperature from x and y, the gradi-
ent magnitude and its direction (i.e., the polar coordinates of the gradient vector) were 
calculated. Figure 2 shows the obtained results.

 
  

a) b)
F i g.  2.  Distribution of gradients in the defective area and its surroundings:

a) in rectangular coordinates, the red component is x, the green component is y; b) in polar coordinates, 
color saturation is the value, color tone is the direction; the defective area is shown by a dotted square

The above images clearly show that the magnitude of both the gradient components 
along two axes and the length of the gradient vector in the defective area were on ave-
rage lower than in the defect free area. To numerically evaluate this effect on a selected 
fragment of a thermal film frame, a line was selected that was close to the centers of 
the cells (Fig. 3).

F i g.  3.  Thermogram of the defective region and its surroundings.  
The defective area is shown by a dotted square; the selected section is shown by a line

The gradient was calculated in a sliding window 13 pixels wide, which corresponded 
to the length of the section of monotonic temperature change associated with heat leakage 
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into the cell walls. The temperature on the line and the temperature gradient along it 
are shown in Figure 4.

F i g.  4.  Values of temperature on the selected line and temperature gradient  
on the selected line along it

The average amplitude of the gradient in the defect free area was 1.91 K/mm, in 
the defective area it was 0.47 K/mm, which was 4.01 times lower. This amplitude 
discrepancy made it possible to use the temperature gradient as a criterion for flaw 
identification. Since the reason for the difference in gradients in the defective and 
defect free areas was different heat leakage into the walls of the honeycomb, the 
gradient should be calculated in a area that coincides in size with the value of the 
monotonic dependence of temperature on the coordinate. This size was the distance 
from the wall to the center of the cell, i.e., half the center-to-center distance of cells 
having a common wall. However, the value of the gradient was not constant: for 
points corresponding to the center of the cell or the middle of the wall, the gradient 
took a near-zero value, i.e., in terms of the gradient value at these points, the defective 
and flawless areas were indistinguishable. The discrimination problem can be solved 
by comparing the gradient values at points between the center and the wall, but this 
required an additional algorithm for searching and identifying cells. Therefore, it was 
advisable to introduce such an informative parameter by which one can judge the 
presence or absence of a flaw at each point of the observed surface, without reference 
to the elements of the honeycomb structure. One of the ways to do this is to use the 
sliding average of the absolute value of the gradient as an informative parameter for 
the presence or absence of a flaw at a point. As a sample implementation, a moving 
average of the gradient was calculated on the data shown in Figure 4 in the window 
which width was equal to the center-to-center distance of the cells. The distribution 
graph of the obtained parameter value is shown in Figure 5.
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F i g.  5.  Distribution of an informative parameter over a selected segment

The graph (Fig. 5) clearly shows that the selected informative parameter had a lower 
value in the defective area. However, the choice of a specific threshold value that would 
allow reliable defect detection was impossible without additional processing. Therefore, 
it was necessary to calculate the gradient value over a larger number of pixels and take 
measures to reduce the noise inherent to the method.

A way to use more pixels was the calculation of the gradient not along the section line, 
but around the area. However, if the gradient was not calculated on a line perpendicular 
to the walls, the gradient component in one direction was not sufficient. Therefore, the 
vector length for the neighborhood of each point was calculated. A visualization of the 
result is shown in Figure 6.

F i g.  6.  Calculation of the absolute value of the gradient in the defective area and its surroundings  
at different times after heating: a) 0 s; b) 1 s; c) 2 s; d) 3 s; e) 4 s; f) 5 s; g) 6 s; h) 7 s 

The informative parameter had a lower value in the defective area, however, de-
veloping a threshold value that allowed, without additional processing, separating the 
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defective and defect free areas with satisfactory accuracy was impossible, because the 
defective and defect free areas had too large portions of the areas in which the value of the 
selected informative parameter was similar. When developing a criterion, it was necessary 
to reduce the probability of errors of the first and second types as much as possible (Table).

T a b l e 
Errors of the first and second type in defect detection

Area Flaw found No flaw found
Defect free Error of the first type

(α error, false positive conclusion)
Correct operation

Defective Correct operation Error of the second type  
(β error. false negative conclusion)

Source: Complited by the authors.

To reduce the likelihood of such errors, the minimum average risk criterion (Bayes 
criterion) was chosen. When applying the Bayes criterion, there must be some parameter 
indicating whether a point belongs to a defective or defect free area, a threshold value 
of this parameter and the area under the probability density curves of this parameter for 
the defective and defect free area. 

To estimate the change of thermal flow in defect area the simplest informative pa-
rameter, calculated as a moving average of the absolute value of the surface temperature 
gradient can be used.
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As can be seen from the Figure 7, the minimum error value corresponded to the 
moment immediately after the lamp passes through and was about 38%. This value was 
quite large that brought the method closer in reliability to random guessing, and therefore 
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it was necessary to improve the method to reduce the proportion of errors. The distribu-
tion curves of the gradient value at the moment of the greatest difference (immediately 
after the passage of the heater) overlapped significantly (Fig. 8).
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F i g.  8.  Weight distribution functions of the gradient modulus

Since the pattern of spatial distribution of the gradient modulus repeats the honeycomb 
structure, it is proposed to use a moving average taken over a circular area, the size of which 
corresponds to the minimum repeating pattern of the honeycomb structure, as an informative 
parameter. Such averaging should lead to a decrease in parameter oscillations with a period 
corresponding to the cell size. The result of this transformation is shown below in Figure 9.

F i g.  9.  For each fragment is counted from the moment of complete passage 
 of the heater over the observed region at different times after heating:  

a) 0 s; b) 1 s; c) 2 s; d) 3 s; e) 4 s; f) 5 s; g) 6 s; h) 7 s 
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The change in the sum of type I and type II errors for the method is shown in Figure 10.
Averaging the result on an area improved the result significantly; the minimum er-

ror became 11.8%. The distribution of gradient modules in the defective and defect free 
areas at the moment of the smallest error and visualization of the gradient distribution 
for this moment are shown in Figure 11.
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F i g.  11.  Distribution of the values of the informative parameter of the improved method  

in the defective region and its surroundings
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